

NOVA University of Newcastle Research Online

nova.newcastle.edu.au

Abu Zehar, A., Berretta, R. & Noman, N. et al. (2019) An adaptive memetic algorithm for feature selection using proximity graphs, Computational Intelligence, 35(1) 156-183 Available from: <u>http://dx.doi.org/10.1111/coin.12196</u>

This is the peer reviewed version of the following article: *Abu Zeher, A., Berretta, R. & Noman, N. et al. (2019) An adaptive memetic algorithm for feature selection using proximity graphs, Computational Intelligence, 35(1) 156-183 which has been published in final form at:* <u>http://dx.doi.org/10.1111/coin.12196</u>. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Accessed from: http://hdl.handle.net/1959.13/1414643

An Adaptive Memetic Algorithm for Feature Selection using Proximity Graphs

Amer Abu Zaher, Regina Berretta¹, Nasimul Noman, Pablo Moscato

School of Electrical Engineering & Computing The University of Newcastle, University drive, Callaghan, 2300, Australia

Amer.AbuZaher@uon.edu.au,[Regina.Berretta, Nasimul.Noman, Pablo.Moscato]@newcastle.edu.au

¹ Corresponding author

Abstract

We propose a multivariate feature selection method that employs proximity graphs for assessing the quality of feature subsets. Initially, a complete graph is built, where nodes are the samples, and edge-weights are calculated considering only the selected features. Next, a proximity graph is constructed based on these weights and different fitness functions, calculated over the proximity graph, evaluate the quality of the selected feature set. We propose an iterative methodology based on a memetic algorithm for exploring the space of possible feature subsets aimed at maximizing a quality score. We designed multiple local search strategies and we employed an adaptive strategy for automatic balancing between the global and local search components of the memetic algorithm. The computational experiments were carried out using four well-known datasets. We investigate the suitability of three different proximity graphs (MST, K-NN and RBG) for the proposed approach. The selected features have been evaluated using a total 49 classification methods from an open source data mining and machine learning package (WEKA). The computational results show that the proposed adaptive memetic algorithm can perform better than traditional genetic algorithms in finding more useful feature sets. Finally, we establish the competitiveness of our approach by comparing it with other well-known feature selection methods.

Keywords: feature selection, proximity graph, minimum spanning tree, memetic algorithm, evolutionary algorithm

1. Introduction

The exponential growth of available data has placed an increasing demand to computer scientists. More effective and efficient techniques are required for data analysis. One particular challenge in some problems domains is that the number of features, many of which are irrelevant or redundant, significantly exceeds the number of samples [1]. An effective method to handle the 'curse of dimensionality' is to project a high-dimensional data onto a smaller dimension without losing features which are relevant for classification.

The fundamental problem of dimensionality reduction is to identify meaningful low-dimensional spaces of interest from data in high dimensions. Several approaches exist, perhaps the most popular is *feature selection*. The aim, in this case, is to find a subset of the features that may best maintain the "core information" existing in the entire dataset without losing important characteristics [2]. In other words, when samples in the dataset belong to a finite set of distinct "classes" (they are "labelled'), a feature selection approach attempts to identify the best subset of features that can discriminate between any pair of samples that have different "class labels".

Over the last decades, many methods for features selection have been proposed which can be broadly categorized in one of the following classes: *filters*, *wrappers* or *hybrid*, based on their approach for selecting features.

The *filter* approaches, in which the best subset is selected by using some predetermined selection criteria or evaluation function, tend to be simpler to implement, faster in practice, and often proven to be among the algorithmically most efficient methods. These approaches work independently of any learning algorithm that can employ the selected features; therefore, they may fail to select feature subsets that could show good generalisation performances when used in conjunction with a good classification algorithm. Filter approaches can be *univariate* or *multivariate*. *Univariate* filter methods start by individually ranking each feature by using a statistical test or a predefined criterion, then use some ad hoc method to select the best-ranked features [3]. Examples of univariate filter-based feature selection methods can be found in [4, 5]. Understandably, such methods do not consider the pairwise correlation between feature values across the set of samples. On the other hand, *multivariate* approaches work by ranking a subset of features (instead of individual features) by searching for the combination of features with the highest rank. Some examples of multivariate based approaches include correlation-based feature selection (CFS) [6], INTERACT [7], Relief [8] and ReliefF [9], MRMR[10], M_d filter [11] SFS-LW [12], LLE score [13] and an approach based on the (α,β)-k-feature set problem [14].

In *wrapper* approaches, the selection process is an iterative combination of search, learning and evaluation phases. This method employs a classifier to evaluate the selected subset of features. The goal is to select the subset of features best suited to the learning algorithm, therefore, the classification performance of wrapper approaches are better than filter approaches. However, wrapper methods are computationally more expensive than filter methods and may overfit the training data especially in small datasets, which is a serious problem from the classification point of view [3]. Recently, several nature inspired algorithms have been proposed for wrapper based feature selection [15-17].

Finally, the *hybrid* approaches are characterized by combining techniques from both filter and wrapper methods allowing an iteration between the feature selection process and the learning algorithm. Basically, hybrid approaches use the filter method to minimise the search space, and the wrapper method to choose the best reduction. For example, Xie et al. [18] used a Fisher score and sequential forward floating search as a filter method, and an SVM classifier from the wrapper method to attain a more accurate and efficient subset. In a recent work, a hybrid approach has been proposed that filters by maximizing relevance, minimizing redundancy and maximizing synergy of the candidate features, then it is combined with a real-coded genetic algorithm [19].

In this work, we propose a novel filter multivariate feature selection approach that employs a proximity graph to evaluate the quality of a subset of features. We first construct a complete weighted graph in which each node represents one of the samples, and the edge weights indicate the distances between samples calculated

using a subset of features. Next, a proximity graph is calculated, and the subset of features is evaluated using a fitness function computed over the proximity graph's topological structure. For instance, the number of edges connecting samples from different classes is one natural quality score that can be used to evaluate the quality of the subset of features. Other fitness functions are also explored in this work.

We developed a memetic algorithm (MA) [20] for searching the subset of features. Several local search heuristics were designed and embedded in the framework of a genetic algorithm (GA). To allow global exploration and local exploitation, an adaptive scheme was incorporated within the proposed memetic framework. Preliminary versions of the current work were presented in [21] and [22], where only the Minimum Spanning Tree (MST) was used as the proximity graph and/or only a GA was used as the search technique, respectively. The effectiveness of our approach is verified using four real-world datasets available on the public domain. The quality of the selected features was evaluated by several classification algorithms and a comparison was carried out with existing feature selection methods.

The structure of this paper is described next. In Section 2, the proposed approach using proximity graphs for feature selection is explained in detail. Section 3 presents the local search algorithms, the proposed memetic framework and the adaptive mechanism responsible to deliver a synergy between the global and local component of the memetic algorithm. Section 4 presents the computational experimental results and comparative studies. Finally, Section 5 presents some discussion on the results and Section 6 concludes the paper.

2. Feature selection using proximity graphs

Given a complete graph G(V, E, W), a subgraph $G_{prox}(V, E_{prox}, W_{prox}) \subseteq G$ is considered to be a proximity graph if and only if the relationship between two nodes satisfies particular requirements [23]. The family of proximity graphs includes: the Minimum Spanning Tree (MST), the K-Nearest Neighbours graph (K-NN), the Relative Neighbourhood Graph (RNG), the Gabriel graph (GG) and the Delaunay Triangulation (DT).

According to Carreira-Perpinán et al. [24] and Inostroza-Ponta et al. [25], proximity graphs are useful constructs for clustering and manifold learning because they represent neighbour relationships between objects. If we construct proximity graphs with samples as nodes and edges with a weight that represent the distance between samples then it is reasonable to centre the feature selection procedure around such representation in order to generate more meaningful relationships between these objects when some class membership information is also known.

In this work, we use three proximity graphs: Minimum Spanning Tree (MST), K-Nearest Neighbours (K-NN) and Relative Neighbourhood Graph (RNG) to address the problem of feature selection and then study the effect of their outputs (subsets of features) on classification performance.

First, let's define the proximity graphs used this work. Given G(V, E, W), a spanning tree is a sub-graph of G that links all nodes with (n-1) edges. There are several possible spanning trees for a given weighted complete graph G(V, E, W). The MST, denoted by $G_{MST}(V, E_{MST}, W_{MST})$, is the spanning tree in which the total sum of weights of the (n-1) edges is the lowest among all possible spanning trees. Two well-known algorithms for constructing the MST are Kruskal's and Prim's algorithms. The K-NN graph (denoted as $G_{KNN}(V, E_{KNN}, W_{KNN})$) is a subgraph of G such that each node $v \in V$ is linked with the K of its nearest neighbours. An edge $e_{ij} \in E$ is included in E_{KNN} if the distance between v_i and v_j is among the K-th smallest distances from v_i to other nodes in V. The RNG, which we denote as $G_{RNG}(V, E_{RNG}, W_{RNG})$, is constructed as follows: an edge e_{ij} is included in E_{RNG} if and only if: $d_{ij} \leq max \{d_{ix}, d_{xj}\}, \forall x \neq i, j$, where d_{ij} is the distance between objects i and j. We refer the reader to more information about these proximity graphs (as well as the Gabriel Graph and the Delaunay Triangulation) in references [23, 25].

Next, we explain how a proximity graph is constructed from a given dataset. Let $H_{m,n}$ be an $m \times n$ matrix where m represents the number of features, n indicates the number of samples and h_{ij} holds the value of feature i in the sample j. Let C_n be an n dimensional array where c_j holds the class label of the sample j. Assume that a

subset of k features is selected, then an $n \times n$ dimensional dissimilarity matrix $D_{n,n}$ can be calculated using only these k features. For instance, $D = \{d_{ij}\}$ can be computed using the Euclidean distance metric between samples i and j over the selected features. As an example, consider a dataset represented by the matrix $H_{7,5}$ in Figure 1(a) and suppose the subset $\{f_{2,}f_{4,}f_{6}\}$ is selected. Figure 1(b) shows the dataset containing only the selected features $H_{3,5}$. Next, a distance matrix $D_{5,5}$ is calculated (Figure 1(c)) using the dataset from Figure 1(b).

			S	Sample	s				s1	s2	s3	s4	s5
		s1	s2	s3	s4	s5		f2	3.94	0.73	5.25	6.29	6.31
	f_1	7.01	4.36	5.72	2.47	8.82		f4	0.11	4.67	0.06	1.37	9.30
	f ₂	3.94	0.73	5.25	6.29	6.31		f6	7.17	8.69	7.20	5.56	2.28
Features	f_3	2.30	6.42	2.80	8.43	4.92		Classes	0	0	1	1	1
	f_4	0.11	4.67	0.06	1.37	9.30				(L))		
	f 5	9.56	5.90	8.22	5.11	5.61	[_	0	5.78	1.31	3.11	10.7	
	f_6	7.17	8.69	7.20	5.56	2.28		$D_{ii} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	5.78 1.31	0	6.63 0	7.18 2.34	9.68
	f_7	6.83	2.58	1.56	4.58	8.17		y E	3.11	7.18	2.34	0	8.58
Cl	ass(C _n)	0	0	1	1	1		L	10.7	9.68	10.5	8.58	0]
		(a)								(c	;)		

Figure 1. (a) An example of a dataset $H_{m,n}$ with m = 7 features and n = 5 samples. (b) The reduced dataset $H_{k,n}$ with the selected subset of features { $f_{2s}f_{4s}f_{6}$ }. (c) A distance matrix $D_{5\times 5}$ considering only the reduced dataset $H_{3,5}$.

Given *D*, we can have a complete, undirected and weighted graph G(V, E, W), where each node in *V* represents a sample (i.e. |V| = n), *E* is the set of edges between a pair of samples, and *W* is the set of weights of each edge with $w_{ij} = d_{ij}$. Figure 2(a) shows the graph representation of the dataset $H_{3,5}$ from Figure 1(b) with the weights from the distance matrix $D_{5,5}$ from Figure 1(c). The nodes in the graph are labelled using black for class 0 and white for class 1. We now can compute a proximity graph from *G*. Figure 2(b) shows the MST constructed from the graph in Figure 2(a).

Figure 2. (a) The graph *G* (*V*,*E*,*W*) represents the distance matrix *D* where the samples from two classes are labelled using black and white nodes respectively. (b) A MST is constructed from G where only one edge connects samples from different classes (red edge).

Note that a different subset of features will give a different dissimilarity matrix leading to a different proximity graph. The evaluation of the subset of features related to a specific proximity graph is described next.

2.1. Evaluating feature sets

Now, the set of features used to construct the proximity graph can be evaluated. In this work, we suggest evaluating the quality of the subset of features based on its size, which we will denote as k (not to be confused

the number of neighbours considered in a K-NN graph) and/or the number of edges connecting nodes (samples) from different classes (denoted by e) in the built proximity graph. We proposed four evaluation criteria:

Mine: In this criteria, the objective is to choose the subset of features that minimises the number of edges, *e*, connecting samples from different classes in the constructed proximity graph.

MineMink: Since it is important to reduce the size of the feature set, this criterion aims to minimise the sum of the normalised e and normalised size of feature set (k).

MineMink:
$$Minimise\left(\frac{e}{n-1} + \frac{k}{m}\right)$$
 (2)

The previous two evaluation criteria do not take into account the weight of the edges. It is possible that two different solutions could produce two different proximity graphs with the same value of e, but the weights of the interclass edges could be different, which would indicate a different quality of features. To better discriminate samples from different classes we should also try to maximise distances between samples of different classes. For that reason, we define a new score, named proximity graph score (*PGscore*), for a given proximity graph G_{prox} (V, E_{prox}, W_{prox}) and use it evaluating features. Assuming we have a bipartition of V in V_A and V_B (where V_A and V_B are the sets of samples that belong to class A and B, respectively), we can define a score for G_{prox} as follows:

$$PGscore(A,B) = \frac{\frac{1}{|V_A|} \sum_{\substack{j \in V_A \\ j \in V_B}}^{i \in V_A} w_{ij} - \frac{1}{|V_B|} \sum_{\substack{j \in V_B \\ j \in V_B}}^{i \in V_B} w_{ij}}{1 + \max_{\substack{i \in V_B \\ j \in V_B}} \{w_{ij}\} - \min_{\substack{i \in V_B \\ j \in V_B}} \{w_{ij}\}}$$
(3)

We can then define the other two evaluation criteria by using *PGscore* in Equation (3).

MineMaxPGscore: In this criterion, we favour the feature sets that bring the samples from the same class closer and keep the samples of different classes apart. In this case, the objective is to minimise the ratio between the number of edges, e, and the PGscore(A,B)

$$\mathbf{MineMaxPGscore:}_{Minimise}\left(\frac{e}{PGscore(A,B)}\right)$$
(4)

MineMinkMaxPGscore: Like MineMink, in this criterion we consider the number of interclass edges (e) and the feature set size (k) as well as *PGScore*. In this case, the objective is to minimise the ratio between the sum of the normalised e and normalised k values and the *PGscore*(A,B)

MineMinkMaxPGscore: *Minimise*
$$\left(\frac{\frac{e}{n-1} + \frac{k}{m}}{PGscore(A, B)}\right)$$
 (5)

The four evaluation criteria defined above are used as the fitness function in the proposed MA for exploring the feature space as explained in the next section.

3. Memetic algorithms for searching the feature space

Memetic Algorithms (MA), first introduced by Moscato in 1989 [26], is a population-based metaheuristic that has proven to be very efficient tackling practical optimisation problems in a variety of applications [38]. The key strategy behind MAs is to hybridise the recognised strength of a population-based method with the intensification capability of a local search to take advantage of both paradigms. Studies on MAs have confirmed that these algorithms are better capable of exploring the search space for complex problems than the traditional evolutionary algorithms (EAs) [20]. Moreover, it also has been shown that MAs can successfully

produce efficient and effective results for many NP-hard combinatorial optimisation problems, including the feature selection problem [27, 28].

We adopted one of the most commonly used MA frameworks, one in which a basic genetic algorithm (GA) provides the global exploration capability and some local search (LS) algorithm contributes achieving the exploitation of the search space. Furthermore, we also proposed an adaptation scheme for balancing the global search and the local search capabilities. The MA searches for the optimal feature sets which are evaluated by constructing proximity graphs as explained in the previous section. Therefore, we call this method Feature Selection with Proximity graph using Memetic Algorithm (FSPMA). In the following subsections, we explain different components of our algorithm.

3.1. Memetic Framework

The memetic framework used in this work is shown in Algorithm 1. As specified before, the global search capability is provided by a standard GA. In our previous work [22], we carried out extensive computational experiments to evaluate several GAs implemented for feature selection using MST. We have implemented two strategies: Steady State GA (SSGA) and Generational GA (GGA) using different combinations of operators and parameters. The performance of these algorithms was evaluated using four datasets, and one of the Generational GAs exhibited significantly better performance over the others, which is the one chosen as the global search algorithm in our memetic framework. Next, we describe each component of the algorithm.

Population: The population is a collection of individuals where an individual is a set of parameters that describe a single solution to the target problem, which in our case is a subset of features. We represent each individual using a binary array (*s*) of size *m* (total number of features), where $s_j=1$ if feature *j* (*j*=1,...,*m*) is selected, $s_j=0$, otherwise.

First, the population P, structured as a list of p individuals and their corresponding fitness values, is created by *initialisePop()*. The method randomly initialises each of the p individuals in the population. In order to increase the diversity of the population as well as to control the size of the feature sets being selected we use an *initialisation bias* inspired by [29]. First, the number of selected features in the *i*-th individual, denoted as $size(P_i)$, is determined using a linear function defined in Equation (6).

$$size(P_i) = \left\lfloor \frac{x_{max} - x_{min}}{p} * i + x_{min} \right\rfloor; \text{ where } 1 \le i \le p$$
(6)

Accordingly, the size of the selected subset of features will range between two parameters: x_{min} (the minimum number of selected features) and x_{max} (the maximum number of selected features). In our implementation, the value of x_{max} and x_{min} is set to 50% and 5% of *m*, respectively. After calculating $size(P_i)$, the *i*-th individual is created by randomly selecting $size(P_i)$ number of features in P_i . *initialisePop()* guarantees that each individual in the population is unique and assigns a fitness value, which is one of the four evaluation criteria (i.e. *Mine*, *MineMink*, *MineMaxPGscore*, *MineMinkMaxPGscore*) which have been introduced in Section 2.1.

Algorithm 1: The proposed memetic algorithm (FSPMA).

p: number of individuals in the population	
<i>P</i> : population of individuals and their fitness values $(P =p)$	
q: number of offspring in each generation	
Q: the set of offspring and their fitness values $(Q =q)$	
\tilde{P}_{LS} : local search probability ($P_{LS} = 0.50$)	
01 $P \leftarrow initialisePop()$	
02 for $i \leftarrow 1$ to 10% p do	
03 Ind \leftarrow randomly select an individual from P	
04 Ind \leftarrow localSearch (Ind)	
05 $P \leftarrow updatePop(P, Ind)$	
06 Repeat	
$07 \qquad \int O \leftarrow \{\}$	
08 Repeat	
09 selectParents(Parent1, Parent2)	
10 $Offspring \leftarrow crossover(Parent1, Parent2, r_{crossover})$)
11 $Offspring \leftarrow mutation(Offspring, r_{mutation})$	
12 <i>fitness</i> (Offspring)	
13 if a rand(0,1) > P_{LS} then	
14 offspring \leftarrow localSearch (offspring)	
15 if offspring is not in Q then	
16 $Q \leftarrow add(Q, offspring)$	
17 i++	
18 $until i = q$	
19 $P \leftarrow updatePop(P, Q)$	
20 updatePls()	
21 until Stop1 or Stop2	

Genetic Operators: Initially, *selectParents*(*Parent1*, *Parent2*) select the parents from the current population using tournament selection. The tournament strategy selects two different sets of individuals from the current population: *set1* and *set2*. In each set, five different individuals are chosen randomly such that $set1 \cap set2 = \emptyset$. The fittest individual in *set1* and *set2* becomes *Parent1* and *Parent2*, respectively.

Next, the *crossover*(*Parent1*, *Parent2*) employs the uniform crossover operator with a crossover rate of $r_{crossover} = 40\%$ to create a new individual *Offspring*. The generated *Offspring* then undergoes mutation operation, *mutation*(*Offspring*), which is implemented using 1-flip mutation with a mutation rate of $r_{mutation} = 5\%$.

In each generation, a group of q offspring, denoted by Q, is created from potentially q different parent pairs through crossover and mutation. Next, the generated set of offspring, Q compete with the individuals in the current population, P, for survival. The **updatePop**(P, Q) selects the fittest p individuals from p+q candidates (i.e. the p individuals in the current population and the q new offspring created in each generation) for constituting the population of the next generation.

The iterative search continues until either of the two stopping criteria has been met. The first criterion, *Stop1*, is to terminate if a predetermined maximum number of fitness evaluations $Eval_{max} = 10000$ has elapsed; and the second criterion, *Stop2*, is to terminate if the best individual is unchanged for a maximum number of fitness evaluations $BEval_{max} = 1000$.

3.2. Local Search

The other key component in the MA framework is the Local Search (LS) algorithm which performs an intense search in the neighbourhood of an individual. The purpose of a LS algorithm is to improve the current solution to the local optimum by exploiting the local neighbourhood of a solution. The success of a LS algorithm depends on many things: the aptitude of the LS algorithm to exploit the neighbourhood, the frequency and the length of the local search, the quality of the individual undergoing a local search, etc. [30].

We designed five different LS search algorithms (LS1, LS2, LS3, LS4 and LS5). The general structure of these LS algorithms is shown in Algorithm 2. The LS scheme continues the search as long as it can improve the

current solution and stops after a maximum number of failed attempts (maxNumberAttempts = 10) to improve the current solution. All five LS algorithms work within this framework, but employ different neighbourhood definitions. Next, we describe the neighbourhood definition employed in each LS.

Algorithm 2: Local Search algorithm structure.						
localse	arch(currentSolution)					
01	failure $\leftarrow 0$					
02	while failure < maxNumberAttempts do					
03	failure \leftarrow failure + 1					
04	newSolution \leftarrow create a new neighbouring solution from currentSolution					
05	<i>if newSolution.fitness < currentSolution.fitness then</i>					
06	$currentSolution \leftarrow newSolution$					
07	failure $\leftarrow 0$					
08	return(currentSolution)					

LS1: A neighbouring solution (*newSolution*) is created by randomly flipping one position in the current solution (*currentSolution*).

LS2: First, a position (feature) x in the *currentSolution* is chosen randomly and its nearest neighbouring y, using Euclidean distance, is identified. If both x and y are the same (i.e. they both are 0 or both are 1), then create the *newSolution* by randomly flipping one of the two positions (x or y).

LS3: Same as in LS2, two neighbouring positions x and y in the *currentSolution* are identified. If x and y are different (i.e. one is 0 and the other is 1) then create the *newSolution* by swapping the values of x and y.

LS4: LS4 applies both LS2 and LS3. In other words, after selecting the neighbouring positions x and y, if both x and y are the same (i.e. they both are 0 or both are 1) then the *newSolution* is created by randomly flipping one of them. If x and y are different (i.e. one is 0 and the other is 1) then the *newSolution* is created by swapping their values.

LS5: The LS5 algorithm begins by identifying the nearest neighbour of each feature (using Euclidean distance). Next, for all selected features in the *currentSolution* (for all positions with value 1), the neighbour features are identified. The *newSolution* is created by selecting these neighbour features, and we call this *newSolution* reflection of *currentSolution*. If the *newSolution* is not better, then the *currentSolution* is changed using a modified version of LS4 where x is chosen randomly, and y is chosen as the reflection of x.

3.3. Adaptive balance between global search and local search

The synergy between the global and local searches is an essential aspect for the success of MAs. In order to design an effective searching mechanism, by taking advantage of both paradigms, we need to combine the exploration capability of GA and the exploitation capability of LS in a well-balanced manner [31]. Heavy exploitation coupled with little exploration may result in premature convergence of the search. On the other hand, shallow exploitation paired with too much exploration may slow-down the convergence of the search. Additionally, the best length and the frequency of the applicability of the local search is often problem dependent [32]. Therefore, an excellent and suitable strategy would be to balance the extent of both search paradigm adaptively taking feedback from the search itself [31].

In this work, we propose to distribute the search time between the LS and GA adaptively depending on how each search component performed in recent history – an idea originally proposed by Ishibuchi et al. [31]. We used a parameter called probability of LS (P_{LS}), similar to [31], to find this balance. Initially, the $P_{LS} = 0.5$ which means we select 50% offspring to undergo the LS. During the search, we keep track of the performance of the LS. For all the offspring that undergo LS, we count how many of those were improved ($nLS_{Improved}$), the average fitness of the offspring improved by the LS ($FitLS_{Improved}$), the average fitness of the offspring improved by the constraint of the end of each generation, we update the P_{LS} value using the records of LS performances in the last generation. We give more

emphasis to the LS (increasing the value of P_{LS}) if it continuously improves the offspring, otherwise, the probability of the global search is increased (i.e. the value of P_{LS} is decreased). In this way, the computational time (number of fitness evaluations) is adaptively allocated between the global search and the LS based on their relative performance. Algorithm 3 depicts the proposed *updatePLS()* procedure. The procedure considers only the subset of the offspring that are subject to LS, P_{LS} is increased by 0.03 or decreased by 0.02 at a time and kept between the values 0.1 and 0.75.

Algorithm 5: Aujusting the FLS value	Algorithm 3	3: A	djusting	the	PLS	value.
--------------------------------------	-------------	------	----------	-----	-----	--------

updateP_Ls()
<i>FitLS</i> _{notImproved} : the average fitness value of the solutions not improved by the LS
<i>FitLS</i> _{Improved} : the average fitness value of the solutions improved by the LS
<i>nLS_{notImproved}: number of the solutions not improved by the LS</i>
nLS _{Improved} : number of the solutions improved by the LS
01 if $(nLS_{Improved} = 0)$ or $(FitLS_{Improved} > FitLS_{notImproved})$ then
02 $P_{LS} = max(0.1, P_{LS} - 0.02)$
03 else if $(nLS_{notImproved} = 0)$ or $(FitLS_{Improved} \leq FitLS_{notImproved})$ then
04 $P_{LS} = min(0.75, P_{LS} + 0.03)$
05 return (P _{LS})

4. Computational results

This section presents the computational experiments we performed to establish the effectiveness of the proposed method. The experiments performed over multiple datasets exhibit the superiority of the memetic algorithm over the genetic algorithm. The suitability of different proximity graphs for the proposed method has also been investigated. Furthermore, the contribution of different components in the proposed memetic algorithm such as the local search and the adaptive mechanism are also examined.

4.1. Datasets

We used four well-known binary classification datasets that are available in the public domain for future reproducibility and comparability with past studies. The characteristics of these four datasets used are summarised in (Table 1) and described next.

Shakespearean era plays and poems dataset: This dataset contains 256 literary works from the Shakespearean era. The two binary classes in this dataset are plays (202) and poems (54). The "frequency of use" of 220 functional words have been extracted from a cohort of 66907 words previously analysed by Arefin et al. in [4]. The observed frequencies in the different works of these 220 functional words are used as features. The goal is to identify 'a subset of functional words' that can group the works into the two classes: plays and poems.

Alzheimer's disease datasets: These datasets were introduced by Ray et al. [33] and they pose several classification problems. We work with the two first datasets in which the objective is to identify a subset of relative abundances of 120 proteins that could distinguish clinical symptoms of Alzheimer's Disease (AD) five years in advance in comparison against the Non-Demented Control (NDC) group [34]. The training dataset contains the relative abundances (z-scores to be used as features) measured on 83 people belonging to two classes: 43 AD and 40 NDC samples. The test dataset contains 120 protein measures of 81 patients classified into two classes -42 AD samples and 39 NDC samples. We note that the original test dataset also contains 11 samples labelled as 'Other Dementia' (OD) samples, but these are excluded from our analysis to keep it a binary classification problem.

	Table 1 Datasets used for evaluating the FS1 WA method						
Dataset Name		Features	Samples	Classes			
Shakespearean era plays and poems [35]		220	256	Play	202		
Shakespearean era plays and poer	220	230	Poem	54			
	tugining	120	07	AD	43		
Alzheimer's disease [33]	iraining	120	85	NDC	40		
	4	120	01	AD	42		
	lest	120	81	NDC	39		
Calan data at [26]		2000	()	Tumour tissue	40		
Colon dataset [30]		2000	02	Normal tissue	22		
Each man and the second [27]		7120	50	Survivors children	20		
Embryonal lumour [3/]		/129	39	Failures children	39		

Table 1 Datasets used for evaluating the FSPMA method

Colon dataset: The colon dataset [36] consists of the expression of 2000 genes (originally 6000 gene expression levels were measured; 2000 were selected based on the confidence in the measurement) with highest minimal intensity across the 62 samples of colon epithelial cells collected from colon-cancer patients: 22 Normal tissues and 40 Tumour tissues. The goal is to find a subset of genes that can classify Normal tissues and Tumour tissues For more information about the Colon dataset please refer to [36] and it is available on the public domain from the http://genomics-pubs.princeton.edu/oncology/ website.

Embryonal tumour dataset: The data originates from the study of 59 human tissue samples obtained from children with different brain tumours with medulloblastomas [37] associated with the Committee for Clinical Investigation of Boston Children's Hospital. The Dataset C from this study is used as an input instance in this work and is downloaded from http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi website. These samples were labelled into two classes: "survivors" (20) and "failures" (39) (labels taken verbatim from [37]). From the frozen tumour samples RNA was isolated and hybridised to an array containing 7129 probes. The goal is to select a subset of those 7129 probes that can define the best separation of "survivors" and "failures".

4.2. Experimental setup

As mentioned in Section 3.1, the setup of the best performing GA from [22] was selected (it is called GGA4 in [32]) as the global search algorithm in our experiments. Therefore, our proposed memetic algorithm (FSPMA) works with a population of 100 individuals, uses tournament strategy for parent selection and applies uniform crossover and 1-flip mutation for offspring generation as described in Section 3.1. All the algorithms were coded in Python 2.7 and executed under the Unix operating system in a machine with Dual Xeon 2.67 GHz, eight cores and 32 GB RAM.

4.3. Performance of the LS algorithms

Before embedding the LS algorithms in the memetic framework, we evaluated the standalone performance of the designed LS algorithms. We assessed the performance of each LS algorithm, regarding fitness score and time requirement, in improving the quality of a random solution. The study uses all the datasets described in Section 4.1, but only the *Mine* fitness criterion. For each dataset, 50 random solutions are generated and each LS strategy is applied to them. Table 2 shows the results of this experiment regarding average fitness value (Fit) of these 50 solutions before and after applying different LS strategies and the average time in seconds taken by each tested LS strategy. The best performing strategy (in terms of average fitness score) is highlighted for each dataset.

	Table 2: Perio	rmance of	LS scnemes	in <i>Mine</i> fithe	ess criterion	on differen	t datasets.	
	Shakespeare		Alzheimer	Alzheimer's disease		Colon cancer		nal tumour
Local search	Fit	Time	Fit	Time	Fit	Time	Fit	Time
Initial solution	13.84		20.30		14.20		24.92	
LS1	12.84	1.63	17.96	0.18	13.98	0.41	24.86	1.63
LS2	13.08	0.69	18.64	0.06	14.10	0.25	24.88	0.90
LS3	12.96	0.51	18.66	0.05	14.08	0.17	24.82	0.53
LS4	12.52	1.29	18.30	0.13	14.04	0.39	24.80	1.40
LS5	13.60	0.93	18.16	0.10	13.00	0.25	22.66	0.40

Table 2: Performance of LS schemes in *Mine* fitness criterion on different datasets.

According to the results in Table 2, all the proposed LS strategies have the ability to improve the quality of the solution, but it is not conclusive which LS has the best performance in regard to quality of solution and required time. Therefore, we incorporated each of the proposed LS strategies with the global search algorithm and designed five MAs.

4.4. Benefit of adaptive balancing mechanism

All the MAs studied in this work were designed by embedding one of the five LS strategies in the MA framework of Algorithm 1. We denoted the MAs as MA1 (LS1), MA2 (LS2), MA3 (LS3), MA4 (LS4) and MA5 (LS5) where the LS strategy incorporated in them are shown in the parentheses.

Next, we performed some specific experiments to show that the proposed adaptive scheme is useful to determine a right balance between local and global searches in the MAs and improve their search performance thereby. As described earlier, the balance between local and global searching is controlled by the P_{LS} parameter in Algorithm 1. Therefore, we experimented by creating two variants of each MA one of which keeps P_{LS} =50% fixed (denoted by MA1-F, MA2-F, MA3-F, MA4-F and MA5-F) and the other changes it adaptively according to Algorithm 3 (denoted by MA1, MA2, MA3, MA4 and MA5). In this experiment, we use only the AD training dataset and the *Mine* fitness function. Each MA is repeated 50 times. Each row of Table 3 shows the average of 50 executions in terms of the fitness value (*Fit*), number of selected features (*k*), running time in seconds (*Time*), number of fitness evaluations in the global search (*EvGS*), number of fitness evaluations in the local search (*LSTime*) and the average P_{LS} values obtained by the $updateP_{LS}()$ method.

Table 3: Comparison between MAs with fixed P_{LS} and adaptive P_{LS} in the Alzheimer's disease dataset with Mine

				intriess criterio	1.		
	Fit	k	Time	EvGS	EvLS	LSTime	AverageP _{LS}
MA1-F	4.60	40.54	325	4275	23556	260	
MA1	4.60	41.36	264	4062	18740	207	0.41
MA2-F	4.62	40.58	190	3745	11344	125	
MA2	4.44	41.26	236	3927	14889	164	0.62
MA3-F	4.41	40.76	173	4338	9411	102	
MA3	4.34	40.12	241	4317	14830	160	0.70
MA4-F	4.62	39.72	322	4048	24487	257	
MA4	4.60	41.96	414	4041	32795	344	0.64
MA5-F	4.61	40.66	530	3940	41770	424	
MA5	4.64	41.28	117	4498	5720	58	0.11

The results in Table 3 show that the adaptive P_{LS} was helpful in achieving a better fitness score in MA2, MA3 and MA4. In these three MAs the local search schemes were successful in improving the fitness scores of the individuals; therefore, the average P_{LS} score was higher than 0.50. On the other hand in MA1 and MA5 the adaptive strategy was performing similar and worse to fixed P_{LS} , respectively using a much smaller number of fitness evaluations in local search. Looking at the average P_{LS} score we can see that the local search scheme was not useful to improve individual's fitness score and therefore the average P_{LS} was less than 0.5. In terms of computational time, the adaptive LS strategy was more efficient than the fixed LS strategy in the number of fitness evaluation used in local search. Based on these observations, we argue that the adaptive P_{LS} was useful to balance between global and local searches and helped to explore the search space effectively to find a better solution. Therefore, we adopted the adaptive balance in the MAs. Next, we present the extensive computational tests of the MAs using all datasets.

4.5. Performance of the memetic algorithms

After we have ascertained the benefit of the local search schemes and the benefit of the adaptive balancing strategy, we compared the five MAs in all four datasets, using the four fitness criteria. We run each MA 50 times for each fitness criterion on each dataset using the same experimental setup. Tables 4–7 present the results obtained for each dataset, where each row shows the average of 50 runs. The performance of the MAs was compared with their common parent genetic algorithm GA. We also run GA allowing to use the same

number of fitness evaluations used by the best-performing MA (MA3), which is shown in the tables by GA+. The aim is to show that the hybridisation between the LS and the global search can produce better results than GA even with the same total number of fitness evaluations. Each table shows the average of best fitness values (Fit), the average number of inter-class edges (e), the size of selected subset of features (k), the average execution time in seconds (Time), the average total number of fitness evaluations for global search (EvGen), the average number of fitness evaluations in the LS (EvLS) and the average total local search running time (LSTime). The tables also show the *p*-value result of a Wilcoxon test between the best-performing MA (MA3) and each method.

For the Shakespeare dataset (Table 4), MA3 achieved the best or equal best average fitness scores when compared to other algorithms. Almost half of the Wilcoxon *p*-values (11 out of 24) were significant (≤ 0.05). MA2 and MA3 gave the same results using *Mine* criterion. In addition, MA3 did not exhibit notably different behaviour using the *MineMink* fitness criterion. In the case of the AD training dataset (Table 5), the MA3 performed significantly better than the other methods in most cases (83% of Wilcoxon p-values were less than or equal to 0.05). In addition, MA3 required less time in most cases. For the colon cancer dataset (Table 6), MA3 outperformed other methods significantly as 92% of Wilcoxon p-values indicated that the MA3 results were significantly better than the other methods. Another advantage of MA3 is that it achieved the best results in less time than the other MAs. Finally, the results obtained when we used the embryonal tumour dataset (Table 7) show 71% of Wilcoxon p-values were less than or equal to 0.05, indicating a significantly better performance by MA3. Using Mine, MA2 obtained better results than MA3, but the difference was not statistically significant (p = 0.12) and MA2 required more computational time. Using *MineMink*, MA3 and MA5 achieved the same result, but again, MA3 required less computational time. It is also worth mentioning that MA3 achieved significantly better results in most of the cases when compared with GA+ in all four datasets which establish the superiority of memetic search over pure genetic search. Based on the results from Tables 4-7, it can be concluded that MA3 outperformed the other algorithms where MA3 was significantly better ($p \le 0.05$) than the other methods in 77% of Wilcoxon tests.

		Fit	8	-	Tima	EnCon		I STime	n valua
	MA1	<u>1 44</u>	<u>60.84</u>	<u>е</u> 1 44	2277	2477	17403	1904	0.06
	MAT	1.44	61.16	1.44	1407	2477	0103	1904	0.00
	MAZ	1.22	01.10 59.00	1.22	1497	2441	9192	1054	0.45
ы	MA3	1.22	58.00	1.22	1250	2531	0902	800	
Mi	MA4	1.68	61.02	1.68	2303	2334	1/851	1908	0.05
	MA5	1.58	59.86	1.58	685	2496	3887	365	0.04
	GA	1.70	59.00	1.70	541	2560			0.02
	GA4+	1.50	32.19	1.50	1700	9500			0.01
	MAI	0.08	13.78	3.48	1844	9968	12371	///4	0.08
	MA2	0.07	13.34	3.62	1880	10000	10648	673	0.21
4in	MA3	0.07	12.96	3.62	1759	10000	12403	740	
neh	MA4	0.08	13.66	3.72	1834	10000	19055	1140	0.06
Mi	MA5	0.08	14.42	3.88	1745	10000	14357	1090	0.09
	GA	0.08	15.28	4.26	713	10000			0.07
	GA+	0.07	11.92	3.98	1770	22400			0.34
	MA1	6.07	112.42	2.80	2358	2447	19577	2030	0.03
ore	MA2	5.39	113.72	2.46	1631	2454	10072	1177	0.07
Gsc	MA3	5.35	115.68	3.00	1638	2464	9881	1165	
axp	MA4	5.61	114.26	2.60	2662	2523	22156	2273	0.01
eMi	MA5	6.08	111.00	3.00	983	2432	6881	648	0.00
Min	GA	6.11	111.14	2.82	515	2475			0.00
,	GA+	5.44	116.40	3.70	1820	12300			0.04
re	MA1	0.30	29.30	12.78	2574	10000	18502	1627	0.08
sco	MA2	0.30	28.32	12.88	2460	10000	16215	1423	0.12
PG	MA3	0.29	27.34	12.82	2916	9913	18625	1549	
Max	MA4	0.30	28.20	13.18	3589	9968	33912	2620	0.05
ink]	MA5	0.30	28.56	13.40	2546	10000	23154	1686	0.06
мə	GA	0.34	33.24	13.76	761	10000			0.00
Min	GA+	0.30	34.28	12.40	2922	28500			0.08
	0.1	0.00	020	12:10		20000			0.000
	Table 5: Per	formance of	different alg	gorithms on	Alzheimer	<u>dataset</u> usin	ng differen	t fitness crite	eria
	Table 5: Pert	formance of Fit	different alg k	gorithms on e	Alzheimer Time	<u>dataset</u> usii EvGen	ng different EvLS	t fitness crite LSTime	eria p-value
	Table 5: Per	formance of Fit 4.60	different alg k 41.36	gorithms on e 4.60	Alzheimer Time 264	<u>dataset</u> usin <i>EvGen</i> 4062	ng different EvLS 18740	t fitness crite LSTime 207	eria p-value 0.02
	MA1 MA2	formance of <i>Fit</i> 4.60 4.44	different alg <u>k</u> 41.36 41.26	gorithms on <u>e</u> 4.60 4.44	Alzheimer <i>Time</i> 264 236	<u>dataset</u> usin <u>EvGen</u> 4062 3927	ng different EvLS 18740 14889	t fitness crite LSTime 207 164	eria p-value 0.02 0.05
	Table 5: Perf MA1 MA2 MA3	formance of Fit 4.60 4.44 4.34	different alg k 41.36 41.26 40.12	gorithms on <u>e</u> 4.60 4.44 4.34	Alzheimer <i>Time</i> 264 236 240	<u>e dataset usin</u> <u>EvGen</u> 4062 3927 4317	ng different EvLS 18740 14889 14830	t fitness crite <i>LSTime</i> 207 164 160	eria <u>p-value</u> 0.02 0.05
Mine	MA1 MA2 MA3 MA4	formance of Fit 4.60 4.44 4.34 4.60	k 41.36 41.26 40.12 41.96	gorithms on <u>e</u> 4.60 4.44 4.34 4.60	Alzheimer <i>Time</i> 264 236 240 414	<u>e dataset usin</u> <u>EvGen</u> 4062 3927 4317 4041	ng different EvLS 18740 14889 14830 32795	t fitness crite <i>LSTime</i> 207 164 160 344	eria <u>p-value</u> 0.02 0.05 0.02
Mine	MA1 MA2 MA3 MA4 MA5	formance of Fit 4.60 4.44 4.34 4.60 4.64	different alg k 41.36 41.26 40.12 41.96 41.28	gorithms on e 4.60 4.44 4.34 4.60 4.64	Alzheimer <i>Time</i> 264 236 240 414 117	<u>dataset</u> usin EvGen 4062 3927 4317 4041 4498	ng different <i>EvLS</i> 18740 14889 14830 32795 5720	t fitness crite LSTime 207 164 160 344 58	eria <u>p-value</u> 0.02 0.05 0.02 0.01
Mine	MA1 MA2 MA3 MA4 MA5 GA	Fit 4.60 4.44 4.34 4.60 4.64 4.64 4.70	k 41.36 41.26 40.12 41.96 41.28 41.00	e 4.60 4.44 4.34 4.60 4.60 4.60 4.60 4.61	Alzheimer <i>Time</i> 264 236 240 414 117 74	<u>dataset</u> usin <u>EvGen</u> 4062 3927 4317 4041 4041 4498 4160	ng different EvLS 18740 14889 14830 32795 5720 	t fitness critte LSTime 207 164 160 344 58 	eria <u>p-value</u> 0.02 0.05 0.02 0.01 0.02
Mine	Table 5: PertMA1MA2MA3MA4MA5GAGA+	Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43	k 41.36 41.26 40.12 41.96 41.28 41.00 30.72	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43	Alzheimer <i>Time</i> 264 236 240 414 117 74 285	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100	ng different EvLS 18740 14889 14830 32795 5720 	t fitness critte LSTime 207 164 160 344 58 	eria <u>p-value</u> 0.02 0.05 0.02 0.01 0.02 0.02 0.05
Mine	Table 5: PertMA1MA2MA3MA4MA5GAGA+MA1	Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22	k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86	gorithms on e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.20	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 1948	ng different EvLS 18740 14889 14830 32795 5720 16781	t fitness crite <i>LSTime</i> 207 164 160 344 58 205	p-value 0.02 0.05 0.02 0.01 0.02 0.05
Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2	Fit 4.60 4.44 4.34 4.60 4.60 4.61 4.62 4.63 0.22 0.22	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924	ng different EvLS 18740 14889 14830 32795 5720 16781 37006	t fitness crite LSTime 207 164 160 344 58 205 359	p-value 0.02 0.05 0.02 0.01 0.02 0.05 0.02 0.01 0.02 0.05 0.06 0.07
ink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3	Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.20	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74	gorithms on e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9903	ng different EvLS 18740 14889 14830 32795 5720 16781 37006 22650	t fitness crite LSTime 207 164 160 344 58 205 359 238	p-value 0.02 0.05 0.02 0.01 0.02 0.05 0.02 0.01 0.02 0.05 0.06 0.07
teMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.20 0.22	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68	e 4.60 4.44 4.34 4.60 4.60 4.60 4.60 4.60 6.20 6.70 6.24 6.58	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930	ng different EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021	t fitness crite LSTime 207 164 160 344 58 205 359 238 602	eria p-value 0.02 0.05 0.02 0.01 0.02 0.05 0.06 0.07 0.07
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA MA1 MA5 GA MA1 MA2 MA3 MA4 MA5	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 9984	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.07 0.12
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 	eria p-value 0.02 0.05 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA4 MA5 GA GA+ MA1 MA2 GA+ GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA GA GA GA+	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.23 0.22	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.04 16.68	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 	p-value 0.02 0.05 0.02 0.01 0.02 0.05 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA3 MA4 MA5 GA MA4 MA5 MA4 MA5 MA4 MA5 MA1	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 47.86	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98	Alzheimer Time 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552	ng different EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411	eria p-value 0.02 0.05 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05 0.00
ore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA5 GA GA+ MA1 MA2	Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 47.86 48.58	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9648	ng different EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.12 0.04 0.05 0.00 0.02
5score MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA2 MA3	Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.8 47.86 48.58 44.32	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96	Alzheimer Time 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675	ng different EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.12 0.04 0.05 0.00 0.02
xPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA3 MA4 MA5 GA GA+ MA3 MA4 MA5 GA GA+ MA3 MA4	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 48.58 44.32 47.82	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675 9348	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.02 0.04 0.05 0.00 0.02
sMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA5 GA GA+ MA1 MA2 MA1 MA2 MA3 MA4 MA5	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 47.86 48.58 44.32 47.82 44.86	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675 9348 9520	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.02 0.04 0.05 0.00 0.02 0.03 0.04
dineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA2 MA3 MA4 MA5 GA	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 47.86 44.32 47.82 44.86 46.04	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675 9348 9520 10000	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.04 0.03 0.04 0.03
MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA3 MA4 MA5 GA GA GA GA+	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70 16.36	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675 9348 9520 10000 48100	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.07 0.02 0.03 0.04 0.00 0.00 0.03 0.00 0.00
e MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA4 MA5 GA MA4 MA5 MA4 MA5 GA GA+ MA1	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70 16.36 0.46	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70 24.72	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675 9348 9520 10000 48100 10000	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 281	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05 0.03 0.04 0.00 0.00
core MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA5 GA MA4 MA5 GA MA4 MA5 GA GA+ MA1 MA2	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70 16.36 0.46 0.46	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70 24.72 25.60	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68 20.94	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418 635	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9675 9348 9520 10000 48100 10000 10000	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555 36034	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 281 448	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05 0.03 0.04 0.00 0.00 0.00
PGscore MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA++ MA1 MA2 MA3 MA4 MA5 GA MA4 MA5 GA MA4 MA5 MA4 MA5 MA1 MA2 MA3	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70 16.36 0.46 0.46 0.46	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70 24.72 25.60 21 44	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68 20.94 18.96	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418 635 557	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9984 10000 32500 9552 9648 9520 10000 48100 10000 10000 10000	ng differenti EvLS 18740 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555 36034 29265	t fitness crite LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 281 448 350	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05 0.03 0.04 0.00 0.00 0.00
AaxPGscore MineMaxPGscore MineMink Mine	Table 5: Perf MA1 MA2 MA3 MA4 MA5 GA GA+ MA3 MA4	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70 16.36 0.46 0.46 0.46 0.46	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70 24.72 25.60 21.44 25.14	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68 20.94 18.96 20.86	Alzheimer Time 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418 635 557 1076	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 99520 9648 9675 9348 9520 10000 10000 10000 10000 10000 10000 10000 10000 10000	ang differenti EvLS 18740 14889 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555 36034 29265 71801	t fitness crita LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 281 448 350 886	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.07 0.03 0.04 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00
nkMaxPGscore MineMink Mine Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5	formance of Fit 4.60 4.44 4.34 4.60 4.61 4.60 4.60 4.61 4.62 4.63 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.22 0.23 0.24 0.636 16.38 16.31 18.70 16.36 0.46 0.46 0.46 0.46	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70 24.72 25.60 21.44 25.14 24.94	e 4.60 4.44 4.34 4.60 4.61 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.60 4.61 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68 20.94 18.96 20.86 20.94	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418 635 557 1076 419	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9952 9648 9675 9348 9520 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	ang differenti EvLS 18740 14889 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555 36034 29265 71801 24602	t fitness crita LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 281 448 350 886 282	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05 0.00 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMinkMaxPGscore MineMink Mine Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA++ MA1 MA2 MA3 MA4 MA5 GA GA++ MA1 MA2 MA3 MA4 MA5 GA GA	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.24 0.636 16.38 16.31 18.70 16.36 0.46 0.46 0.47 0.51	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 47.86 48.58 44.32 47.82 44.86 46.04 41.70 24.72 25.60 21.44 25.14 24.94 25.4%	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68 20.94 18.96 20.86 20.94 21.08	Alzheimer <i>Time</i> 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418 635 557 1076 419 109	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 99552 9648 9675 9348 9520 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	ang differenti EvLS 18740 14889 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555 36034 29265 71801 24602	t fitness crita LSTime 207 164 160 344 58 205 359 238 602 503 411 574 562 1087 273 281 448 350 886 282	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.05 0.06 0.07 0.07 0.12 0.04 0.05 0.00 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MineMinkMaxPGscore MineMareDascore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA	formance of Fit 4.60 4.44 4.34 4.60 4.64 4.70 4.43 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.22 16.71 16.36 15.65 16.38 16.31 18.70 16.36 0.46 0.46 0.47	different alg k 41.36 41.26 40.12 41.96 41.28 41.00 30.72 17.86 17.10 15.74 16.68 17.34 17.04 16.68 44.32 47.82 44.86 46.04 41.70 24.72 25.60 21.44 25.14 24.94 25.48 21.72	e 4.60 4.44 4.34 4.60 4.64 4.70 4.43 6.20 6.70 6.24 6.58 6.31 7.68 6.18 8.98 8.94 7.96 8.86 9.10 9.62 8.72 19.68 20.94 18.96 20.86 20.94 21.08 19.06	Alzheimer Time 264 236 240 414 117 74 285 338 507 419 743 704 49 398 577 812 805 1303 429 134 809 418 635 557 1076 419 109 664	dataset usin EvGen 4062 3927 4317 4041 4498 4160 19100 9948 9924 9903 9930 9952 9648 9675 9348 9520 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	ang differenti EvLS 18740 14889 14889 14830 32795 5720 16781 37006 22650 68021 43126 27515 38131 38444 74820 21867 22555 36034 29265 71801 24602	t fitness critic LSTime 207 164 160 344 58 205 359 238 602 503 205 359 238 602 503 238 602 503 238 602 503 238 602 503 238 602 503 238 602 503 238 602 503 238 602 503 238 602 503 2411 574 562 1087 273 281 448 350 886 282 	p-value 0.02 0.05 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.06 0.07 0.07 0.02 0.03 0.04 0.05 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Performance of different algorithms on Shakespeare dataset using different fitness criteria

	Table 6: Perf	formance of d	ifferent algo	rithms on <u>c</u>	colon cance	<u>r dataset</u> us	ing differen	it fitness cri	teria
		Fit	k	Ε	Time	EvGen	EvLS	LSTime	p-value
	MA1	5.22	389.32	5.40	360	1812	7410	275	0.04
	MA2	5.04	386.12	5.04	234	1780	3845	145	0.33
0)	MA3	5.04	408.62	5.04	135	1747	1131	51	
dine	MA4	5.28	381.68	5.28	344	1856	7131	258	0.04
4	MA5	5.40	342.70	5.50	187	1860	4669	112	0.00
	GA	5.40	403.00	5.40	67	1840			0.02
	GA+	5.24	278.30	5.24	155	5600			0.04
	MA1	0.1654	172.50	4.76	236	1904	9060	188	0.01
	MA2	0.1602	173.62	4.32	225	2008	8987	170	0.05
ink	MA3	0.1575	166.82	4.32	83	2055	706	16	
Nəı	MA4	0.1672	173.60	4.84	282	2071	11921	227	0.00
Mir	MA5	0.1614	141.30	5.48	400	1933	22423	356	0.04
	GA	0.1664	167.32	5.08	74	1978			0.01
	GA+	0.1584	155.10	4.88	86	3000			0.05
	MA1	30.38	613.42	7.24	1696	1983	25576	1518	0.00
ore	MA2	30.72	597.76	7.54	828	1972	10314	632	0.00
Gsc	MA3	28.74	557.20	7.50	550	2051	6624	370	
axP	MA4	29.13	599.18	7.00	1182	2029	18624	1013	0.05
мә	MA5	32.04	418.92	8.44	508	2256	15431	405	0.00
Mir	GA	32.07	587.58	7.58	227	2073			0.00
	GA+	29.00	643.90	7.54	667	8640			0.17
ıre	MA1	0.95	282.60	9.20	535	3334	14135	420	0.00
Jsco	MA2	0.96	283.10	9.52	519	3265	12337	376	0.00
txP(MA3	0.84	270.10	9.20	320	3523	5107	160	
kΜa	MA4	0.97	281.78	9.50	719	3303	18836	575	0.00
Min	MA5	0.90	217.02	10.78	710	3549	29819	609	0.02
inel	GA	0.96	272.80	10.10	161	3007			0.00
М	GA+	0.88	231.80	9.92	362	8600			0.03
	Table 7: P	erformance o	f different a	lgorithms o	n embryo d	ataset using	g different f	itness criter	ria
	Table 7: P	erformance o Fit	f different al k	lgorithms o E	n <u>embryo d</u> <i>Time</i>	lataset using EvGen	g different f EvLS	fitness criter LSTime	ria <i>p-value</i>
	Table 7: P	erformance o Fit 8.80	f different al <u>k</u> 1216.38	lgorithms o <u>E</u> 8.80	n <u>embryo d</u> <i>Time</i> 1144	lataset using EvGen 2028	g different f EvLS 6002	fitness criter LSTime 827	ria <u>p-value</u> 0.05
	Table 7: P MA1 MA2	erformance o Fit 8.80 8.52	f different al k 1216.38 1116.28	lgorithms o <u>E</u> 8.80 8.52	n <u>embryo d</u> <u>Time</u> 1144 802	lataset using EvGen 2028 2069	g different f <u>EvLS</u> 6002 3586	fitness criter LSTime 827 441	ria <u>p-value</u> 0.05 0.12
	MA1 MA2 MA3	erformance o Fit 8.80 8.52 8.55	f different al k 1216.38 1116.28 1251.10	lgorithms o <u>E</u> 8.80 8.52 8.50	n embryo d Time 1144 802 564	lataset using EvGen 2028 2069 2024	g different f EvLS 6002 3586 995	Fitness criter <i>LSTime</i> 827 441 189	ria <u>p-value</u> 0.05 0.12
Aine	MA1 MA2 MA3 MA4	erformance o Fit 8.80 8.52 8.55 9.45	f different al k 1216.38 1116.28 1251.10 1134.08	lgorithms o <u>E</u> 8.80 8.52 8.50 9.45	n <u>embryo d</u> Time 1144 802 564 985	lataset using EvGen 2028 2069 2024 2000	g different f EvLS 6002 3586 995 5399	Eitness criter LSTime 827 441 189 701	ria <u>p-value</u> 0.05 0.12 0.02
Mine	MA1 MA2 MA3 MA4	erformance o Fit 8.80 8.55 9.45 9.08	f different al k 1216.38 1116.28 1251.10 1134.08 702.94	lgorithms o <u>E</u> 8.80 8.52 8.50 9.45 9.08	n embryo d Time 1144 802 564 985 391	Lataset using EvGen 2028 2069 2024 2000 2233	g different f EvLS 6002 3586 995 5399 5251	Eitness criter LSTime 827 441 189 701 200	ria <u>p-value</u> 0.05 0.12 - 0.02 0.00
Mine	MA1 MA2 MA3 MA4 MA5 GA	erformance o <u>Fit</u> 8.80 8.52 8.55 9.45 9.08 9.86	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00	lgorithms o <u>E</u> 8.80 8.52 8.50 9.45 9.08 9.86	n embryo d Time 1144 802 564 985 391 263	Lataset using EvGen 2028 2069 2024 2000 2233 2000	g different f EvLS 6002 3586 995 5399 5251 -	Eitness criter LSTime 827 441 189 701 200	ria <u>p-value</u> 0.05 0.12 0.02 0.00 0.00 0.00
Mine	MA1 MA2 MA3 MA4 MA5 GA GA+	erformance o <u>Fit</u> 8.80 8.52 8.55 9.45 9.08 9.86 9.72	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22	lgorithms o <u>E</u> 8.80 8.52 8.50 9.45 9.08 9.86 9.72	n embryo d Time 1144 802 564 985 391 263 560	EvGen 2028 2069 2024 2000 2233 2000 3000	g different f EvLS 6002 3586 995 5399 5251 	Eitness criter LSTime 827 441 189 701 200	ria <u>p-value</u> 0.05 0.12 0.02 0.00 0.00 0.00 0.00
Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42	lgorithms o <u>E</u> 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590	EvGen 2028 2069 2024 2000 2233 2000 3000 2184	g different f EvLS 6002 3586 995 5399 5251 8253	Eitness critei LSTime 827 441 189 701 200 468	ria <u>p-value</u> 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03
Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2	erformance o <i>Fit</i> 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.23	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.38	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615	EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280	g different f EvLS 6002 3586 995 5399 5251 8253 6203	Eitness criter LSTime 827 441 189 701 200 468 430	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00
dink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 1002	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 0.21	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 7 12	EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 502	Eitness criter LSTime 827 441 189 701 200 468 430 57	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.02
ineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA5	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.23	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 201	EvGen 2028 2009 2024 2000 2233 2000 3000 2184 2280 2097 2198	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037	Eitness criter LSTime 827 441 189 701 200 468 430 57 584	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 (20)	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 9.76	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 251	EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974	Eitness criter LSTime 827 441 189 701 200 468 430 57 584 682	ria <u>p-value</u> 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 (10.60)	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 9.76	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 205	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 	Eitness critei LSTime 827 441 189 701 200 468 430 57 584 682	ria <u>p-value</u> 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.00 0.00
MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA3 MA4 MA5 GA GA+ MA3 MA4 MA5 GA GA+ MA3 MA4 MA2 MA3 MA4 MA5 GA GA+	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.72	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 8.76	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 999	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 20252	Eitness critel LSTime 827 441 189 701 200 468 430 57 584 682 2010	ria <u>p-value</u> 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.00 0.00 0.00
e MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA2 MA3 MA4 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 35.50 25.00	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2107.02	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.26	n embryo d Time 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477	Lataset using EvGen 2028 2009 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2384	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246	Eitness criter LSTime 827 441 189 701 200 468 430 57 584 682 8919 2572	ria p-value 0.05 0.12 0.02 0.00
score MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA1 MA2 MA1 MA2 MA3 MA4 MA2 MA3 MA4 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 35.50 35.90 33.43	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 330	EvGen 2028 2009 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463	Eitness criter LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.00 0.00 0.04 0.05
cPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA2 MA3 MA4 MA5 GA GA+ MA4 MA5 GA GA+ MA1 MA2 MA3 MA4	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 35.50 35.90 33.43 34.62	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02 14.92	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688	EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374	Eitness critei LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.
MaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA3	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 35.50 35.90 33.43 34.62 35.72	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2176.86	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02 14.92 15.94	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678	Eitness critei LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.
tineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 MA3 MA4 MA5 GA	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2176.86 2151.56	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02 14.92 15.94 15.44	n embryo d Time 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678	Eitness critei LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.03 0.00
MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA1 MA2 GA GA+ MA1 MA2 GA GA+	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.23 0.20 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95	lgorithms o E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.94	n embryo d Time 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350	Lataset using EvGen 2028 2009 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327 8600	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 	Eitness critel LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.00 0.00 0.04 0.05 0.05 0.04 0.00 0.06
e MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA4 MA5 GA GA+ MA1	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77 0.84	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95 1049.94	E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.94	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350 2031	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327 8600 2886	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 13467	Eitness criter LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492 1607	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.04 0.00 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.
score MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA5 GA GA+ MA1 MA2	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77 0.84 0.90	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95 1049.94 1099.08	E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.92 15.44 17.46 17.90	n embryo d Time 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350 2031 1649	EvGen 2028 2009 2024 2000 2233 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327 8600 2886 2867	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 13467 9099	Bitness critei LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492 1607 1137	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.00 0.37 0.00 0.00 0.04 0.05 0.05 0.04 0.00 0.04 0.05 0.04 0.00 0.04 0.05 0.04 0.00 0.04 0.00 0.05 0.00
PGscore MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA5 GA GA+ MA1 MA2 MA1 MA2 MA3	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77 0.84 0.90 0.83	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95 1049.94 1099.08 1120.98	E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.92 15.94 17.46 17.90 17.38 17.38	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350 2031 1649 661	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 284 2141 2282 2064 2327 8600 2886 2867 2684	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 13467 9099 1310	Bitness critel LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492 1607 1137 219	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.00 0.00 0.37 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.
MaxPGscore MineMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA3 MA4	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77 0.84 0.90 0.88 0.88	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95 1049.94 1099.08 1120.98 1093.58	E 8.80 8.52 8.50 9.45 9.08 9.72 7.80 8.38 8.70 8.24 8.44 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.94 17.46 17.90 17.38 17.46	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350 2031 1649 661 2210	Lataset using EvGen 2028 2069 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327 8600 2886 2867 2684 3092	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 13467 9099 1310 14009	Bitness critel LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492 1607 1137 219 1704	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00
tinkMaxPGscore MineMink Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA2 MA3 MA4 MA2 MA3 MA4 MA5	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.23 0.20 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77 0.84 0.90 0.88 0.88 0.86	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95 1049.94 1099.08 1120.98 1093.58 824.16	E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.94 17.46 17.90 17.46 17.20	n embryo d <i>Time</i> 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350 2031 1649 661 2210 539	Lataset using EvGen 2028 2069 2024 2000 2233 2000 2233 2000 2233 2000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327 8600 2886 2867 2684 3092 3001	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 13467 9099 1310 14009 10552	Eitness critel LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492 1607 1137 219 1704 318	ria p-value 0.05 0.12 0.02 0.00 0.04 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00
ineMinkMaxPGscore MineMink Mine Mine	MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA2 MA3 MA4 MA5 GA GA+ MA1 MA2 MA3 MA4 MA5 GA GA+	erformance o Fit 8.80 8.52 8.55 9.45 9.08 9.86 9.72 0.22 0.23 0.20 0.23 0.20 0.24 0.24 0.24 35.50 35.90 33.43 34.62 35.72 36.15 33.77 0.84 0.90 0.83 0.88 0.86 0.88	f different al k 1216.38 1116.28 1251.10 1134.08 702.94 1268.00 1222.22 589.42 609.54 599.80 599.22 345.14 628.96 618.60 2251.73 2197.02 2096.40 2117.86 2151.56 2252.95 1049.94 1099.08 1120.98 1093.58 824.16 1086.08	E 8.80 8.52 8.50 9.45 9.08 9.86 9.72 7.80 8.38 8.70 8.24 8.44 8.76 15.41 15.36 16.02 14.92 15.94 15.44 14.92 15.94 15.43 17.46 17.90 17.38 17.46 17.20 16.74	n embryo d Time 1144 802 564 985 391 263 560 590 615 233 743 801 254 285 998 477 339 688 137 146 350 2031 1649 661 2210 539 670	EvGen 2028 2009 2024 2000 2233 2000 3000 2184 2280 2097 2198 2364 2183 2650 2224 2284 2141 2282 2064 2327 8600 2886 2867 2684 3092 3001 2963	g different f EvLS 6002 3586 995 5399 5251 8253 6203 572 8037 19974 29353 11246 6463 20374 6678 13467 9099 1310 14009 10552	Bitness criter LSTime 827 441 189 701 200 468 430 57 584 682 8919 3573 2190 5855 492 1607 1137 219 1704 318	ria p-value 0.05 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.37 0.00 0.37 0.00 0.00 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.00 0.05 0.00

4.6. Classification Results

In this section, we assess the practical use of the set of features obtained by FSPMA (using MA3) for classification. In order to evaluate the classification performance of the different selected feature sets, we adopted the methodology used in [17]. We used a total of 49 machine learning algorithms from the well-known WEKA software package [50] (version 3.6.4). The list of classifiers used is shown in Table 8 along with their respective types as categorised in WEKA.

Туре	Classifier
Bayes	BayesNet, NaiveBayes, NaiveBayesUpdatable
Function	Logistic, SimpleLogistic, RBFNetwork, SMO, SPegasos, VotedPerceptron
Lazy	IB1, Kstar, LWL
Rules	ConjunctiveRule, DecisionTable, Jrib, NNge, OneR, Part, Ridor
Tree	ADTree, BFTree, FT, LADTree, LMT, DecisionStump, J48, J48graft, RepTree, NBTree, Random_Forest, RandomTree
Mesc	HyperPipes, VFI
	AdaBoost, AttributeSelectedClassifier, Bagging, ClassificationViaRegression, Dagging, Decorate, END,
Meta	FilteredClassifier, LogitBoost, MultiBoostAB, MultiClassClassifier, OrdinalClass, RandomCommittee,
	RandomSub Space, RotationForest, ThresholdSelector

Table 8: List of classifiers categorised by their types from WEKA [38] used in this work

For each of the MA3 results from Tables 4–7, the subset of features (out of 50 solutions) with the best fitness value (Fit) was selected for evaluating the classification performance of each algorithm using 10-fold cross validation. We then calculated the average accuracy (ACC) and the average Mathew's correlation coefficient (MCC) of the 49 WEKA classifiers for comparison.

As described in Section 3.1, the solutions in the initial population are created by setting the parameters as $x_{max} = m*50\%$ and $x_{min} = m*5\%$ (Equation (6)), which has a direct influence on the number of features selected by the algorithms. This effect of initialisation bias can be noticed by the number of selected features in Table 4-7 by different MAs. Since the number of selected feature also influences the classification accuracy, we re-ran the MA3 algorithm with a different initial bias, specifically with $x_{max} = m*10\%$ and $x_{min} = m*1\%$, in order to obtain a smaller subset of features. To differentiate between these two different initialization biases we use the term *wide initialisation* for $x_{max} = m*50\%$ and $x_{min} = m*5\%$ and *narrow initialisation* for $x_{max} = m*10\%$ and $x_{min} = m*1\%$. We compared the effect of these two initialization biases in Table 9 in terms of the fitness value (Fit), the size of the subset of features (k), the number of edges that connect samples between different classes in the MST (e), the required time in seconds (Time), total number of required fitness evaluations (Ev), average MCC and average ACC for different fitness criteria and datasets. For each dataset and fitness function, the best ACC and MCC results are highlighted.

The results presented in Table 9 show that initialisation using the narrow initialisation not only reduced the size of the selected subset of features, but also had a positive effect by improving classification performance in terms of MCC and ACC. No single fitness function was found to be consistently the best for all datasets. However, *MineMink* achieved the best performance in two datasets and each of *Mine* and *MineMinkMaxPGscore* achieved the best performance in one dataset.

D		x • . • . •	111111	7 .		Mag			
Dataset		Initialisation	Fit	е	k	Time	Ev	MCC	ACC
et	Mine	Wide	1	1	36	1108	8874	0.889	0.963
tase		Narrow	1	1	17	1403	11080	0.903	0.967
Dai	MineMink	Wide	0.08	1	18	2083	24021	0.889	0.963
re		Narrow	0.07	1	17	2126	24219	0.900	0.966
реа	MineMaxPGscore	Wide	2.29	1	35	1813	13066	0.882	0.961
tsəy		Narrow	1.89	1	19	1615	14112	0.895	0.965
hal	MineMinkMaxPGscore	Wide	0.22	4	73	2741	24948	0.885	0.962
S		Narrow	0.16	3	13	2667	24006	0.888	0.962
t	Mine	Wide	3	3	38	213	22017	0.766	0.882
ase		Narrow	2	2	12`	209	19113	0.786	0.892
dat	MineMink	Wide	0.16	3	15	378	30819	0.766	0.883
Ś		Narrow	0.1	3	8	319	28864	0.790	0.895
er	MineMaxPGscore	Wide	12.34	3	34	775	40884	0.779	0.889
sim		Narrow	10.09	2	15	789	44313	0.784	0.891
lzh	MineMinkMaxPGscore	Wide	0.63	3	14	488	33498	0.774	0.887
${\cal V}$		Narrow	0.41	3	12	507	35204	0.785	0.892
	Mine	Wide	3	3	231	172	3092	0.606	0.821
*		Narrow	2	2	66	136	2832	0.622	0.827
ase	MineMink	Wide	0.12	4	109	77	3013	0.601	0.817
Dati		Narrow	0.06	2	69	70	3114	0.630	0.831
I u	MineMaxPGscore	Wide	15.64	5	402	566	9091	0.599	0.818
olo		Narrow	6.63	4	71	487	8917	0.629	0.830
0	MineMinkMaxPGscore	Wide	0.43	12	178	288	7891	0.610	0.822
		Narrow	0.11	4	50	254	7402	0.653	0.842
	Mine	Wide	7	7	654	747	3314	0.257	0.683
iset		Narrow	2	2	68	289	2988	0.456	0.756
atc	MineMink	Wide	0.41	4	436	205	2413	0.366	0.720
ID		Narrow	0.08	2	70	140	2841	0.509	0.782
опа	MineMaxPGscore	Wide	23.42	11	594	986	8241	0.334	0.708
hry		Narrow	2.16	6	73	310	8452	0.465	0.764
Eml	MineMinkMaxPGscore	Wide	0.43	10	598	882	5082	0.385	0.730
1		Narrow	0.16	5	59	343	4894	0.465	0.764

 Table 9: Classification performance of MA3 algorithm using different initialization bias for different dataset and fitness criteria.

The performance of the 49 classifiers in WEKA varies widely. Therefore, next, we calculated the average MCC and ACC for the top five best performing classifiers. Table 10 depicts the results, where each row contains the average from the five top performing classifiers (out of 49 classifiers listed in Table 8) for the feature sets generated by FSPMA with narrow initialization.

 Table 10: The average MCC and ACC for the pool of classifiers created by the best five performing classifiers in different fitness functions.

	Dataset								
	Shakespeare		Alzheimer's disease		Colon cancer		Embryonal tumour		
	ACC	MCC	ACC	MCC	ACC	MCC	ACC	MCC	
All	0.971	0.914	0.864	0.728	0.800	0.552	0.631	0.141	
Mine	0.979	0.937	0.925	0.851	0.846	0.663	0.798	0.539	
MineMink	0.983	0.950	0.928	0.857	0.865	0.703	0.831	0.615	
MineMaxPGscore	0.979	0.938	0.926	0.852	0.845	0.662	0.790	0.523	
MineMinkMaxPGscore	0.975	0.925	0.925	0.851	0.859	0.692	0.787	0.518	

The Table 10 evidently shows that the *MineMink* fitness function is always superior. The results of Table 9 showed that *MineMink* fitness function achieved the best average MCC and ACC results in two datasets (Alzheimer's and Embryo datasets). However, after selecting the five best-performing classifiers, it attained the best results in all datasets.

Figure 3 illustrates the MST generated by FSPMA using the *MineMink* fitness function in each dataset. We can see that in case of Shakespeare dataset, an ideal solution (single interclass edge) has been achieved where the 202 samples in the 'plays' class represented as black nodes are perfectly separated from the 54 samples in the 'poems' class represented as white nodes. The constructed MSTs have achieved the quasi-ideal solutions

(few inter-class edges) in the other datasets. From these observations, we can see that FSPMA with *MineMink* fitness criteria generates the highest quality feature sets that can separate the samples into different classes very well.

Figure 3: The MST constructed for the feature set selected by MA3 with *MineMink* fitness function for (a) Shakespeare (b) Alzheimer (c) colon and (d) embryo dataset. Inter-class edges are shown in red.

4.7. Feature Selection using other proximity graphs

In the previous sections, we presented extensive computational results of our approach (FSPMA) using the MST as the proximity graph. In this section, for the generalisation of the hypothesis, we replace the MST in the FSPMA with two other proximity graphs: the K-Nearest Neighbours (K-NN) and the Relative Neighbourhood Graph (RNG). The aim is to examine the usefulness of these proximity graphs in the FSPMA approach for feature selection and classification performance.

From the definition of K-NN graph presented in Section 2, it is clear that for different values of K, different K-NN graphs can be defined. Since it is impractical to test all values for K, we have chosen the value of 'K' in the K-NN graph from K=1 to K= $\lfloor log10(m) + 0.5 \rfloor$. For the Shakespeare and Alzheimer's disease datasets, only 1-NN and 2-NN are studied. Similarly, 1-NN, 2-NN, and 3-NN are used for the Colon dataset and 1-NN, 2-NN, 3-NN, and 4-NN are used for the Embryo dataset. We repeated the same approach as we applied with MST. First, we run FSPMA (MA3) method 50 times for each proximity graph. The subset of features selected by the individual that presented the best fitness value (Fit), out of the 50 runs, is selected. We then evaluated the performance of the chosen feature subset using the 49 Weka classifiers with 10-fold cross validation. The average ACC and MCC values obtained by these 49 classifiers is calculated and compared using different proximity graphs. This process is repeated for each fitness criterion in each dataset.

The outcomes of this experiment are presented in Tables 11-14, where each table contains the results for each dataset. The proximity graph that achieved the best classification accuracy (ACC and MCC) is shown in bold for each fitness function.

 Table 11: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method with different proximity graphs and fitness function in Shakespeare dataset.

	mierene pr	o anning	5	and meness	i anction m	manespeare	ununsen	
	PG	Fit	е	k	Time	Ev	MCC	ACC
	MST	1	1	17	1403	11080	0.903	0.967
Man	1NN	0	0	37	339	7733	0.891	0.963
Mine	2NN	0	0	55	629	8749	0.868	0.956
	RNG	2	2	48	40223	13418	0.876	0.958
	MST	0.07	1	17	2126	24219	0.900	0.966
Minel	1NN	0.05	0	14	462.2	13557	0.893	0.964
міпеміпк	2NN	0.07	2	15	1063	21460	0.875	0.958
	RNG	0.08	10	14	67228	21300	0.858	0.953
	MST	1.89	1	19	1615	14112	0.895	0.965
	1NN	0	0	67	429	7447	0.875	0.958
MineMaxPGscore	2NN	2.82	1	89	1518	17494	0.844	0.949
	RNG	10.8	5	103	60875	21454	0.835	0.945
	MST	0.16	3	13	2667	24006	0.888	0.962
Min MinhManDCoord	1NN	0.25	6	26	1420	29080	0.836	0.945
mineminkmaxPGscore	2NN	0.4	6	36	2210	32519	0.873	0.958
	RNG	0.33	15	23	80777	28066	0.821	0.940

 Table 12: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method with different proximity graphs and fitness function in Alzheimer's dataset

with	uniterent p	UNIMITY	graphs	and mines	s runction m	AIZITCHIICI 5	uatasti	
	PG	Fit	е	k	Time	Ev	MCC	ACC
Mine	MST	2	2	12	209	19113	0.786	0.892
	1NN	1	1	36	92	8832	0.751	0.875
	2NN	9	9	39	277	19568	0.746	0.872
	RNG	5	5	46	1497	16334	0.727	0.862
MineMink	MST	0.1	3	8	318	28864	0.790	0.895
	1NN	0.15	5	10	47	5644	0.764	0.881
	2NN	0.3	12	19	89	7628	0.769	0.883
	RNG	0.24	6	19	2979	30250	0.773	0.886
MineMaxPGscore	MST	10.09	2	15	789	44313	0.784	0.891
	1NN	3.23	1	37	216	19265	0.744	0.871
	2NN	25.85	14	48	519	38620	0.731	0.865
	RNG	16.25	10	35	2166	24651	0.722	0.860
MineMinkMaxPGscore	MST	0.41	3	12	506	35204	0.785	0.892
	1NN	0.34	11	23	93	10742	0.732	0.865
	2NN	0.56	21	22	459	37949	0.740	0.869
	RNG	0.42	24	26	2932	34656	0.754	0.876

 Table 13: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method with different proximity graphs and fitness function in colon cancer dataset

	PG	Fit	е	k	Time	Ev	MCC	ACC
Mine	MST	2	2	66	136	2832	0.622	0.827
	1NN	0	0	117	27	1750	0.551	0.794
	2NN	6	6	101	34	1981	0.551	0.794
	3NN	3	3	146	71	2692	0.530	0.786
	RNG	5	5	117	124	2803	0.524	0.781
MineMink	MST	0.06	2	69	69	3114	0.630	0.831
	1NN	0.07	1	114	37	2287	0.513	0.776
	2NN	0.12	4	107	49	3154	0.553	0.797
	3NN	0.10	2	137	75	3012	0.547	0.793
	RNG	0.12	4	93	226	5357	0.538	0.787
MineMaxPGscore	MST	6.63	4	71	487	8917	0.629	0.830
	1NN	5.12	5	123	142	7996	0.513	0.781
	2NN	9.48	11	124	111	5631	0.489	0.765
	3NN	8.93	3	212	178	5434	0.524	0.785
	RNG	5.98	12	159	461	9456	0.516	0.779
MineMinkMaxPGscore	MST	0.11	4	50	254	7402	0.653	0.842
	1NN	0.33	2	130	40	2478	0.514	0.780
	2NN	0.17	12	126	111	6045	0.525	0.785
	3NN	0.54	29	186	191	6486	0.503	0.774
	RNG	0.11	10	109	438	8810	0.530	0.788

 Table 14: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method with different proximity graphs and fitness function in embryonal tumour dataset

	PG	Fit	e	k	Time	Ev	MCC	ACC
Mine	MST	2	2	68	289	2988	0.456	0.756
	1NN	1	1	56	12	3120	0.473	0.768
	2NN	1	1	88	56	5245	0.453	0.761
	3NN	0	0	73	64	4497	0.462	0.765
	4NN	0	0	81	45	2657	0.461	0.765
	RNG	4	4	54	487	10302	0.460	0.766
MineMink	MST	0.08	2	70	140	2841	0.509	0.782
	1NN	0.09	1	45	11	2800	0.488	0.777
	2NN	0.10	0	52	71	6226	0.437	0.754
	3NN	0.15	0	76	47	3290	0.435	0.749
	4NN	0.11	0	57	118	6136	0.469	0.768
	RNG	0.18	5	57	168	3901	0.447	0.760
MineMaxPGscore	MST	2.16	6	73	509	8452	0.465	0.764
	1NN	0.14	19	67	77	17717	0.194	0.653
	2NN	0.41	41	107	280	21340	0.222	0.670
	3NN	0.71	65	56	400	28408	0.210	0.664
	4NN	0.64	83	111	574	29067	0.217	0.673
	RNG	0.19	21	71	770	16914	0.337	0.719
MineMinkMaxPGscore	MST	0.16	5	59	343	4894	0.465	0.764
	1NN	0.02	11	48	10	2743	0.405	0.743
	2NN	0.01	40	65	159	16207	0.362	0.726
	3NN	0.01	60	52	211	15976	0.347	0.717
	4NN	0.01	88	49	463	26115	0.278	0.694
	RNG	0.00	20	76	519	12884	0.366	0.729

In all four datasets, MST demonstrated superiority in terms of MCC and ACC over other proximity graphs. The classification performance of the FSPMA using MST generated feature sets with the best fitness over different datasets. The next best-performing proximity graph was the 1-NN, which also attained the best results in the case of the embryonal tumour dataset using the *Mine* fitness function. Moreover, as expected, 1-NN was the best-performing proximity graph in terms of execution time (i.e., the time required to run the MA3 code using the corresponding proximity graph) and 2-NN came next. On the other hand, the execution time required by RNG was often ten times or even more than that required by 1-NN. As reported earlier, FSPMA achieved the best fitness value using *Mine* and *MineMink* fitness functions.

Next, as we have done in the previous section, for each fitness function and dataset, we selected the five topperforming classifiers (out of 49 classifiers) for the feature sets generated by the different proximity graphs (MST, K-NN and RNG) and we calculated the average MCC and ACC obtained by the top five classifiers, which are summarized in Table 15. When the selected feature sets were evaluated using high-quality classifiers, the superiority of the *MineMink* fitness function with MST is unanimously established over other fitness functions. The results in Table 15, once again highlight that the feature sets selected using MST and *MineMink* fitness function are superior to the other proximity graphs and other fitness functions.

		М	ine	Mine	MinoMink		MineMaxMSTscore		MineMinkMayMSTscore	
	-	ACC	MCC	ACC	MCC	ACC	MCC	ACC	MCC	
	MST	0.982	0.948	0.983	0.949	0.980	0.941	0.982	0.948	
	1NN	0.980	0.941	0.973	0.921	0.978	0.936	0.973	0.921	
Shakespeare	2NN	0.976	0.929	0.969	0.907	0.969	0.907	0.981	0.945	
	RNG	0.975	0.926	0.969	0.908	0.976	0.929	0.959	0.876	
	MST	0.936	0.874	0.942	0.883	0.933	0.866	0.930	0.861	
Alzheimer's	1NN	0.906	0.813	0.881	0.762	0.906	0.814	0.898	0.798	
disease	2NN	0.911	0.823	0.915	0.830	0.900	0.802	0.898	0.796	
	RNG	0.901	0.803	0.890	0.781	0.901	0.804	0.903	0.808	
	MST	0.861	0.696	0.867	0.709	0.858	0.692	0.865	0.707	
~ .	1NN	0.834	0.629	0.811	0.582	0.812	0.586	0.815	0.587	
Colon	2NN	0.817	0.595	0.829	0.626	0.799	0.565	0.822	0.606	
cancer	3NN	0.809	0.577	0.751	0.459	0.829	0.617	0.819	0.597	
	RNG	0.814	0.584	0.820	0.602	0.817	0.593	0.810	0.579	
	MST	0.814	0.573	0.851	0.669	0.800	0.549	0.807	0.558	
	1NN	0.795	0.535	0.804	0.557	0.675	0.281	0.794	0.525	
Embryonal	2NN	0.784	0.501	0.747	0.443	0.708	0.326	0.745	0.392	
tumour	3NN	0.794	0.528	0.749	0.465	0.663	0.253	0.746	0.404	
	4NN	0.789	0.517	0.765	0.472	0.726	0.368	0.716	0.328	
	RNG	0.791	0.516	0.764	0.470	0.687	0.303	0.701	0.279	

 Table 15: Average ACC and MCC for the pool of classifiers created by accumulating the best five performing classifiers in different proximity graphs.

4.8. Comparison with Other Feature Selection Methods

In this section, we establish the competitiveness of the proposed FSPMA method by comparing it with other well-known feature selection techniques. We compared the performance of the most successful setup of FSPMA (MA3 algorithm with *MineMink* and MST) with nine univariate and multivariate feature selection methods. Among the univariate supervised methods chosen are Chi-square feature selection (Chi), Information gain ratio (GainRatio), Information gain (IG), ReliefF, Symmetrical Uncertainty (SU) from WEKA and CM1 score [39]. Among the multivariate supervised methods, we selected Correlation based Feature Selection (CFS), Consistency subset feature selection (Consistency) from WEKA and (α, β) -*k*Feature Set [40]. We implemented the (α, β) -*k*-feature set and CM1 score methods and for all other methods, we adopted the WEKA implementation using their default configurations. For CM1, following the same approach of [39], we selected the 20 highest and 20 lowest CM1 markers for all datasets. In order to be consistent, we chose the same number of features for other univariate feature selection methods.

Table 16 depicts the results for k, ACC and MCC, where in this case k is the number of features finally selected by the method ('All' indicates the total number of features in each dataset). FSPMA obtained the best results in regards to ACC and MCC in every dataset. In addition, the FSPMA achieved the lowest value of k in the Shakespeare and AD training datasets, and the value of k did not increase significantly with the total number of features. The CFS and the Consistency method selected the largest and the second largest feature set, respectively, for the colon cancer and embryonal tumour datasets. Moreover, the size of feature sets for these methods increased dramatically with the increase in a total number of features. Although the (α,β)-k-feature set method selected the largest feature set for the Shakespeare datasets, its performance was not affected by the total number of features.

In order to evaluate the classification performance of the different selected feature sets, we used the same 49 WEKA classifiers as before. The average MCC and ACC scores of 49 WEKA classifiers are compared in Table 16. FSPMA's *MineMink* fitness function outperformed all the feature selection methods in terms of average MCC and average ACC in all datasets. Clearly, all feature selection methods reduced the dimensionality of the colon cancer dataset, but few improved classification performance as suggested by the average MCC and ACC results for all features (All). In contrast, FSPMA's *MineMink* fitness function reduced the dimensionality of all datasets as well as achieved impressive results compared with all features (*All*). The

second best results in terms of MCC and ACC were achieved by CFS, (α, β) -k-feature set, GainRation and SU in Shakespeare, AD, colon and embryo datasets respectively.

			Dat	aset	
		Shakespeare	Alzheimer's	Colon	Embryonal
		_	disease	cancer	tumour
All	k	220	120	2000	7129
	ACC	0.949	0.848	0.744	0.619
	MCC	0.849	0.698	0.443	0.111
FSPMA	k	17	8	69	70
	ACC	0.966	0.895	0.831	0.782
	MCC	0.900	0.791	0.630	0.509
CFS	k	88	27	642	1762
	ACC	0.957	0.872	0.770	0.648
	MCC	0.870	0.746	0.503	0.187
Consistency	k	18	33	236	1402
	ACC	0.904	0.814	0.740	0.570
	MCC	0.716	0.630	0.448	0.007
(α, β) -k-feature set	k	140	10	60	30
	ACC	0.952	0.891	0.821	0.756
	MCC	0.856	0.784	0.606	0.450
Chi	k	40	40	40	40
	ACC	0.946	0.871	0.804	0.765
	MCC	0.839	0.744	0.571	0.460
GainRatio	k	40	40	40	40
	ACC	0.945	0.877	0.826	0.775
	MCC	0.835	0.755	0.621	0.487
IG	k	40	40	40	40
	ACC	0.953	0.872	0.808	0.760
	MCC	0.861	0.746	0.579	0.459
ReliefF	k	40	40	40	40
-	ACC	0.953	0.872	0.808	0.760
	MCC	0.861	0.746	0.579	0.459
SU	k	40	40	40	40
	ACC	0.949	0.872	0.803	0.777
	MCC	0.848	0.745	0.567	0.494
CM1	k	40	40	40	40
	ACC	0.941	0.860	0.813	0.594
	MCC	0.824	0.722	0.587	0.067

Table 16: Comparison of different feature selection methods in terms of feature-subset size (k), MCC and ACC
--

Once again we evaluated the selected feature set obtained by FSPMA using the top performing classifiers as in previous sections. For each dataset, we condensed the results from the top five performing classifiers (out of 49 classifiers) for the feature sets generated by different feature selection methods. Then we evaluated each of these feature sets using those top classifiers and the average MCC and ACC are presented in Table 17. We observe that the FSPMA continues to exhibit superior performance compared to other feature selection methods in all datasets. The average performance of all feature selection methods was improved when high-quality classifiers were used but FSPMA outperformed all of those in each dataset.

		Shakespeare	Alzheimer's disease	Colon cancer	Embryonal tumour
FSPMA	ACC	0.983	0.925	0.867	0.834
	MCC	0.951	0.851	0.709	0.617
CFS	ACC	0.976	0.885	0.796	0.685
	MCC	0.928	0.771	0.561	0.250
Consistency	ACC	0.929	0.842	0.752	0.565
	MCC	0.791	0.687	0.471	-0.002
(α, β) -k-feature set	ACC	0.968	0.912	0.845	0.775
	MCC	0.905	0.827	0.664	0.494
Chi	ACC	0.959	0.885	0.815	0.786
	MCC	0.876	0.770	0.597	0.515
GainRatio	ACC	0.963	0.892	0.841	0.807
	MCC	0.889	0.785	0.658	0.566
IG	ACC	0.966	0.887	0.818	0.771
	MCC	0.896	0.775	0.604	0.497
ReliefF	ACC	0.955	0.869	0.820	0.729
	MCC	0.867	0.738	0.600	0.389
SU	ACC	0.965	0.882	0.804	0.806
	MCC	0.897	0.764	0.574	0.564
CM1	ACC	0.954	0.878	0.833	0.755
	MCC	0.863	0.757	0.631	0.446

 Table 17: Average ACC and MCC for the pool of classifiers created by accumulating the best five performing classifiers in different feature selection methods.

5. Discussion

We proposed a novel multivariate filter feature selection method employing proximity graphs by considering the distance relationships among samples, given a subset of features. The essence of the approach relies on the hypothesis that for an appropriate set of discriminatory features, the nodes from the same class will cluster in the constructed proximity graph. Therefore, the objective is to find the subset of features which can minimise the number of edges between the samples belonging to different classes.

Based on the above proposition, we designed several scoring functions to measure the quality of a feature set from the topological makeup of the constructed proximity graph. We proposed to quantify the quality of a feature subset based on its size, the number of edges connecting nodes (samples) from different classes in the built proximity graph, and a score calculated from each proximity graph. Based on these variables, we presented four evaluation criteria to evaluate the selected subset of features: *Mine, MineMaxPGscore* and *MineMinkMaxPGscore*.

We proposed a memetic algorithm called FSPMA ('Feature Selection with Proximity graph using Memetic Algorithm'). We designed five different local search algorithms and tested their standalone search effectiveness in terms of fitness improvement and time requirement. After ascertaining that all the designed LS strategies have the ability to improve quality of a feature set, we embedded these local search algorithms in a generational genetic algorithm and designed five memetic algorithms. The experimental results on four real-world datasets showed that the designed hybrid algorithms can explore the search space more effectively than the global search algorithm. We also incorporated an adaptation strategy to balance exploration and exploitation of the search space. The adaptive memetic algorithms were found not only effective but also efficient in optimizing the fitness functions. Among the five memetic algorithms, MA3 outperformed all others significantly when tested with different fitness functions and datasets. Based on this empirical study, we presume that the reason behind the superior performance of MA3 over other MAs is the synergy of the high quality local search operator with the other genetic operators in the common MA framework.

In our study, we used 49 machine learning algorithms from the WEKA software package to evaluate the set of features obtained by the best-performing FSPMA method (MA3) with four proposed fitness functions. We also evaluated the feature-sets using a pool of best-performing classifiers in order to test their classification performance with high-quality classifiers. These analyses show that the FSPMA can reduce the dimensionality and increase classification performance of the algorithms. Due to tractability and practicability, the majority

of analysis in this work was done by using MST as the proximity graph. After establishing the validity of the method we tested the generalization of the approach by testing it on other types of proximity graphs – specifically on K-NN and RNG. This study showed that the method generalized well with other proximity graphs in terms of dimensionality reduction and classification improvement. However, comparing among different types of proximity graphs it was clear that MST can deliver the maximum classification performance when used in the FSPMA framework.

In order to establish the competitiveness of the proposed approach, we compared the results obtained by FSPMA with nine well-known feature selection methods. FSPMA again demonstrated its superiority over the nine methods using the 49 classifiers and using selecting high-quality classifiers. All the empirical study undertaken in this work established the validity and usefulness of the proposed approach for feature selection.

The results of the study suggest that the method is indeed highly scalable since the results with the MST have shown to be very satisfactory in comparison with other choices of proximity graphs. We note that the computational complexity of FSPMA depends on the number of samples, the used fitness criteria and, most importantly, by the type of proximity graph used (i.e. it takes significantly higher time when RNG is used instead of using either the MST or the 1NN graphs). It has been interesting to observe that in this study the best performing FSPMA algorithm uses the MST which scales well for datasets with a larger number of samples. In addition, the MST worked well with the MineMink fitness criteria hence this pair of proximity graph and fitness criteria encourages their joint use for larger datasets.

6. Conclusion

We presented a multivariate filter feature selection method that uses proximity graphs for evaluating the quality of a feature set using proposed fitness scores. In order to search for the optimal feature subset, we implemented an adaptive memetic algorithm that works by optimizing the fitness scores. An extensive study was undertaken using four real-world datasets where we investigate the effect of different types of proximity graphs, fitness scores and memetic algorithmic setups. The effectiveness of the proposed method was established by evaluating the selected features with well known classifiers and comparing with other established feature selection methods.

The current work deserves further investigation in a few important directions. First of all, the only distance metric used in this work was Euclidean distance whereas there are many other metrics exist. It would be interesting to apply a few other important distance metrics as Mahalanobis, Minkowski and Spearman's rank-based distances. Secondly, in the proposed fitness functions, multiple criteria (e.g. feature set size, number of inter-class edges) were combined to formulate a single objective optimisation problem. It would be worth to investigate these multiple criteria as a multi-objective optimisation problem. Finally, the methodology could be investigated in multi-class datasets.

Acknowledgements

Pablo Moscato acknowledges support from the Australian Research Council Future Fellowship FT120100060. Pablo Moscato and Regina Berretta acknowledge support from the Australian Research Council Discovery Projects DP120102576.

References

- [1] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," *The Journal of Machine Learning Research*, vol. 3, pp. 1157-1182, 2003.
- [2] H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," *IEEE Transactions on Knowledge and Data Engineering*, vol. 17, no. 4, pp. 491-502, 2005.
- [3] M. Dash and H. Liu, "Feature selection for classification," *Intelligent Data Analysis*, vol. 1, no. 3, pp. 131-156, 1997.

- [4] A. S. Arefin, R. Vimieiro, C. Riveros, H. Craig, and P. Moscato, "An Information Theoretic Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems," *PLoS ONE*, vol. 9, no. 10, p. e111445, 2014.
- [5] J. R. Vergara and P. A. Estévez, "A review of feature selection methods based on mutual information," *Neural Computing and Applications,* vol. 24, no. 1, pp. 175-186, 2014.
- [6] M. A. Hall, "Correlation-based feature selection for machine learning," The University of Waikato, 1999.
- [7] Z. Zhao and H. Liu, "Searching for interacting features," in *Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI)*, 2007, vol. 7, pp. 1156-1161.
- [8] I. Kononenko, "Estimating attributes: analysis and extensions of RELIEF," in *Proceedings of the European Conference on Machine Learning (ECML-94)*, 1994, pp. 171-182: Springer.
- [9] M. Robnik-Šikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF," *Machine Learning*, vol. 53, no. 1-2, pp. 23-69, 2003.
- [10] H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy," *IEEE Transactions on Pattern Analysis and Machine Intelligence* vol. 27, no. 8, pp. 1226-1238, 2005.
- [11] S. Seth and J. C. Principe, "Variable selection: A statistical dependence perspective," in *Proceedings* of the 9th International Conference on Machine Learning and Applications (ICMLA), 2010, pp. 931-936: IEEE.
- [12] C. Liu, W. Y. Wang, Q. Zhao, X. M. Shen, and M. Konan, "A new feature selection method based on a validity index of feature subset," (in English), *Pattern Recognition Letters*, vol. 92, pp. 1-8, Jun 1 2017.
- [13] Y. Chao, L. Ya-Feng, J. Bo, H. Jungong, and H. Junwei, "LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition," *IEEE Trans Image Process*, vol. 26, no. 11, pp. 5257-5269, Nov 2017.
- [14] C. Cotta, C. Sloper, and P. Moscato, "Evolutionary search of thresholds for robust feature set selection: application to the analysis of microarray data," in *Applications of Evolutionary Computing*: Springer, 2004, pp. 21-30.
- [15] M. Mafarja and S. Mirjalili, "Whale optimization approaches for wrapper feature selection," (in English), *Applied Soft Computing*, vol. 62, pp. 441-453, Jan 2018.
- [16] M. M. Mafarja, D. Eleyan, I. Jaber, S. Mirjalili, and A. Hammouri, "Binary Dragonfly Algorithm for Feature Selection," (in English), 2017 International Conference on New Trends in Computing Sciences (Ictcs), pp. 12-17, 2017.
- [17] S. K. Gu, R. Cheng, and Y. C. Jin, "Feature selection for high-dimensional classification using a competitive swarm optimizer," (in English), *Soft Computing*, vol. 22, no. 3, pp. 811-822, Feb 2018.
- [18] J. Xie, W. Xie, C. Wang, and X. Gao, "A novel hybrid feature selection method based on IFSFFS and SVM for the diagnosis of erythemato-squamous diseases," *Journal of Machine Learning Research-Proceedings Track*, vol. 11, pp. 142-151, 2010.
- [19] O. Abedinia, N. Amjady, and H. Zareipour, "A New Feature Selection Technique for Load and Price Forecast of Electrical Power Systems," (in English), *Ieee Transactions on Power Systems*, vol. 32, no. 1, pp. 62-74, Jan 2017.
- [20] F. Neri, C. Cotta, and P. Moscato, *Handbook of memetic algorithms*. Springer, 2011.
- [21] A. Abu Zaher, R. Berretta, A. S. Arefin, and P. Moscato, "FSMEC: A feature selection method based on the minimum spanning tree and evolutionary computation," presented at the Proceedings of the 13th Australian Data Mining Conference (AusDM 2015), Sydney, Australia, 2015.
- [22] A. Abu Zaher, R. Berretta, N. Noman, and P. Moscato, "A new computational intelligence approach for feature selection using proximity graphs," in *Proceedings of the Applied Informatics and Technology Innovation Conference (AITIC)*, 2016.
- [23] P. Bose *et al.*, "Proximity graphs: E, Δ , Δ , χ and ω ," *International Journal of Computational Geometry & Applications*, vol. 22, no. 05, pp. 439-469, 2012.
- [24] M. A. Carreira-Perpinán and R. S. Zemel, "Proximity Graphs for Clustering and Manifold Learning," in *Neural Information Processing Systems (NIPS)* 2004, vol. 17, pp. 225-232.
- [25] M. Inostroza-Ponta, R. Berretta, A. Mendes, and P. Moscato, "An automatic graph layout procedure to visualize correlated data," in *IFIP International Conference on Artificial Intelligence in Theory and Practice*, 2006.

- [26] P. Moscato, *On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms* (Caltech Concurrent Computation Program, C3P Report). 1989.
- [27] Z. Zhu, Y.-S. Ong, and M. Dash, "Wrapper–filter feature selection algorithm using a memetic framework," *IEEE Transactions on Systems and Cybernetics*, vol. 37, no. 1, pp. 70-76, 2007.
- [28] J. Lee and D. W. Kim, "Memetic feature selection algorithm for multi-label classification," (in English), *Information Sciences*, vol. 293, pp. 80-96, Feb 1 2015.
- [29] A. Moser and M. N. Murty, "On the scalability of genetic algorithms to very large-scale feature selection," in *Real-World Applications of Evolutionary Computing*: Springer, 2000, pp. 77-86.
- [30] J. Y. Lin and Y. P. Chen, "When and What Kind of Memetic Algorithms Perform Well," (in English), 2012 Ieee Congress on Evolutionary Computation (Cec), 2012.
- [31] H. Ishibuchi, T. Yoshida, and T. Murata, "Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling," (in English), *Ieee Transactions on Evolutionary Computation*, vol. 7, no. 2, pp. 204-223, Apr 2003.
- [32] H. Iba and N. Noman, *New frontier in evolutionary algorithms: theory and applications*. World Scientific Publishing Co., Inc., 2011.
- [33] S. Ray *et al.*, "Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins," *Nature medicine*, vol. 13, no. 11, pp. 1359-1362, 2007.
- [34] M. G. Ravetti and P. Moscato, "Identification of a 5-protein biomarker molecular signature for predicting Alzheimer's disease," *PloS One*, vol. 3, no. 9, p. e3111, 2008.
- [35] H. Craig and R. Whipp, "Old spellings, new methods: automated procedures for indeterminate linguistic data," *Literary and Linguistic Computing*, vol. 25, no. 1, pp. 37-52, 2010.
- [36] U. Alon *et al.*, "Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays," *Proceedings of the National Academy of Sciences*, vol. 96, no. 12, pp. 6745-6750, 1999.
- [37] S. L. Pomeroy *et al.*, "Prediction of central nervous system embryonal tumour outcome based on gene expression," *Nature*, vol. 415, no. 6870, pp. 436-442, 2002.
- [38] I. H. Witten, E. Frank, and M. A. Hall, *Data Mining: Practical Machine Learning Tools and Techniques*. Elsevier, 2011.
- [39] J. Marsden, D. Budden, H. Craig, and P. Moscato, "Language individuation and marker words: shakespeare and his maxwell's demon," *PloS One*, vol. 8, no. 6, p. e66813, 2013.
- [40] R. Berretta, W. Costa, and P. Moscato, "Combinatorial optimization models for finding genetic signatures from gene expression datasets," in *Bioinformatics*: Springer, 2008, pp. 363-377.