
NOVA
University of Newcastle Research Online

nova.newcastle.edu.au

Abu Zehar, A., Berretta, R. & Noman, N. et al. (2019) An adaptive memetic algorithm
for feature selection using proximity graphs, Computational Intelligence, 35(1) 156-183

Available from: http://dx.doi.org/10.1111/coin.12196

This is the peer reviewed version of the following article: Abu Zeher, A., Berretta, R. &
Noman, N. et al. (2019) An adaptive memetic algorithm for feature selection using proximity
graphs, Computational Intelligence, 35(1) 156-183 which has been published in final form
at: http://dx.doi.org/10.1111/coin.12196. This article may be used for non-commercial
purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Accessed from: http://hdl.handle.net/1959.13/1414643

http://dx.doi.org/10.1111/coin.12196
http://dx.doi.org/10.1111/coin.12196
https://nova.newcastle.edu.au/vital/access/manager/Repository?view=null&f0=sm_identifier%3A%22http%3A%2F%2Fhdl.handle.net%2F1959.13%2F1414643%22&sort=ss_dateNormalized+desc%2Csort_ss_title+asc

 1

An Adaptive Memetic Algorithm for Feature Selection using Proximity Graphs

Amer Abu Zaher, Regina Berretta1, Nasimul Noman, Pablo Moscato

School of Electrical Engineering & Computing
The University of Newcastle,

University drive, Callaghan, 2300, Australia
Amer.AbuZaher@uon.edu.au,[Regina.Berretta, Nasimul.Noman, Pablo.Moscato]@newcastle.edu.au

1 Corresponding author

 2

Abstract

We propose a multivariate feature selection method that employs proximity graphs for assessing the quality of
feature subsets. Initially, a complete graph is built, where nodes are the samples, and edge-weights are
calculated considering only the selected features. Next, a proximity graph is constructed based on these weights
and different fitness functions, calculated over the proximity graph, evaluate the quality of the selected feature
set. We propose an iterative methodology based on a memetic algorithm for exploring the space of possible
feature subsets aimed at maximizing a quality score. We designed multiple local search strategies and we
employed an adaptive strategy for automatic balancing between the global and local search components of the
memetic algorithm. The computational experiments were carried out using four well-known datasets. We
investigate the suitability of three different proximity graphs (MST, K-NN and RBG) for the proposed
approach. The selected features have been evaluated using a total 49 classification methods from an open
source data mining and machine learning package (WEKA). The computational results show that the proposed
adaptive memetic algorithm can perform better than traditional genetic algorithms in finding more useful
feature sets. Finally, we establish the competitiveness of our approach by comparing it with other well-known
feature selection methods.

Keywords: feature selection, proximity graph, minimum spanning tree, memetic algorithm, evolutionary
algorithm

 3

1. Introduction

The exponential growth of available data has placed an increasing demand to computer scientists. More
effective and efficient techniques are required for data analysis. One particular challenge in some problems
domains is that the number of features, many of which are irrelevant or redundant, significantly exceeds the
number of samples [1]. An effective method to handle the ‘curse of dimensionality’ is to project a high-
dimensional data onto a smaller dimension without losing features which are relevant for classification.

The fundamental problem of dimensionality reduction is to identify meaningful low-dimensional spaces of
interest from data in high dimensions. Several approaches exist, perhaps the most popular is feature selection.
The aim, in this case, is to find a subset of the features that may best maintain the “core information” existing
in the entire dataset without losing important characteristics [2]. In other words, when samples in the dataset
belong to a finite set of distinct “classes” (they are “labelled’), a feature selection approach attempts to identify
the best subset of features that can discriminate between any pair of samples that have different “class labels”.

Over the last decades, many methods for features selection have been proposed which can be broadly
categorized in one of the following classes: filters, wrappers or hybrid, based on their approach for selecting
features.

The filter approaches, in which the best subset is selected by using some predetermined selection criteria or
evaluation function, tend to be simpler to implement, faster in practice, and often proven to be among the
algorithmically most efficient methods. These approaches work independently of any learning algorithm that
can employ the selected features; therefore, they may fail to select feature subsets that could show good
generalisation performances when used in conjunction with a good classification algorithm. Filter approaches
can be univariate or multivariate. Univariate filter methods start by individually ranking each feature by using
a statistical test or a predefined criterion, then use some ad hoc method to select the best-ranked features [3].
Examples of univariate filter-based feature selection methods can be found in [4, 5]. Understandably, such
methods do not consider the pairwise correlation between feature values across the set of samples. On the other
hand, multivariate approaches work by ranking a subset of features (instead of individual features) by
searching for the combination of features with the highest rank. Some examples of multivariate based
approaches include correlation-based feature selection (CFS) [6], INTERACT [7], Relief [8] and ReliefF [9],
MRMR[10], Md filter [11] SFS-LW [12], LLE score [13] and an approach based on the (a,b)-k-feature set
problem [14].

In wrapper approaches, the selection process is an iterative combination of search, learning and evaluation
phases. This method employs a classifier to evaluate the selected subset of features. The goal is to select the
subset of features best suited to the learning algorithm, therefore, the classification performance of wrapper
approaches are better than filter approaches. However, wrapper methods are computationally more expensive
than filter methods and may overfit the training data especially in small datasets, which is a serious problem
from the classification point of view [3]. Recently, several nature inspired algorithms have been proposed for
wrapper based feature selection [15-17].

Finally, the hybrid approaches are characterized by combining techniques from both filter and wrapper
methods allowing an iteration between the feature selection process and the learning algorithm. Basically,
hybrid approaches use the filter method to minimise the search space, and the wrapper method to choose the
best reduction. For example, Xie et al. [18] used a Fisher score and sequential forward floating search as a
filter method, and an SVM classifier from the wrapper method to attain a more accurate and efficient subset.
In a recent work, a hybrid approach has been proposed that filters by maximizing relevance, minimizing
redundancy and maximizing synergy of the candidate features, then it is combined with a real-coded genetic
algorithm [19].

In this work, we propose a novel filter multivariate feature selection approach that employs a proximity graph
to evaluate the quality of a subset of features. We first construct a complete weighted graph in which each
node represents one of the samples, and the edge weights indicate the distances between samples calculated

 4

using a subset of features. Next, a proximity graph is calculated, and the subset of features is evaluated using
a fitness function computed over the proximity graph’s topological structure. For instance, the number of edges
connecting samples from different classes is one natural quality score that can be used to evaluate the quality
of the subset of features. Other fitness functions are also explored in this work.

We developed a memetic algorithm (MA) [20] for searching the subset of features. Several local search
heuristics were designed and embedded in the framework of a genetic algorithm (GA). To allow global
exploration and local exploitation, an adaptive scheme was incorporated within the proposed memetic
framework. Preliminary versions of the current work were presented in [21] and [22], where only the Minimum
Spanning Tree (MST) was used as the proximity graph and/or only a GA was used as the search technique,
respectively. The effectiveness of our approach is verified using four real-world datasets available on the public
domain. The quality of the selected features was evaluated by several classification algorithms and a
comparison was carried out with existing feature selection methods.

The structure of this paper is described next. In Section 2, the proposed approach using proximity graphs for
feature selection is explained in detail. Section 3 presents the local search algorithms, the proposed memetic
framework and the adaptive mechanism responsible to deliver a synergy between the global and local
component of the memetic algorithm. Section 4 presents the computational experimental results and
comparative studies. Finally, Section 5 presents some discussion on the results and Section 6 concludes the
paper.

2. Feature selection using proximity graphs

Given a complete graph G(V,E,W), a subgraph Gprox(V, Eprox,Wprox) ⊆ G is considered to be a proximity graph
if and only if the relationship between two nodes satisfies particular requirements [23]. The family of proximity
graphs includes: the Minimum Spanning Tree (MST), the K-Nearest Neighbours graph (K-NN), the Relative
Neighbourhood Graph (RNG), the Gabriel graph (GG) and the Delaunay Triangulation (DT).

According to Carreira-Perpinán et al. [24] and Inostroza-Ponta et al. [25], proximity graphs are useful
constructs for clustering and manifold learning because they represent neighbour relationships between objects.
If we construct proximity graphs with samples as nodes and edges with a weight that represent the distance
between samples then it is reasonable to centre the feature selection procedure around such representation in
order to generate more meaningful relationships between these objects when some class membership
information is also known.

In this work, we use three proximity graphs: Minimum Spanning Tree (MST), K-Nearest Neighbours (K-NN)
and Relative Neighbourhood Graph (RNG) to address the problem of feature selection and then study the effect
of their outputs (subsets of features) on classification performance.

First, let’s define the proximity graphs used this work. Given G(V,E,W), a spanning tree is a sub-graph of G
that links all nodes with (n–1) edges. There are several possible spanning trees for a given weighted complete
graph G(V,E,W). The MST, denoted by GMST (V, EMST,WMST), is the spanning tree in which the total sum of
weights of the (n–1) edges is the lowest among all possible spanning trees. Two well-known algorithms for
constructing the MST are Kruskal’s and Prim’s algorithms. The K-NN graph (denoted as GKNN(V, EKNN,WKNN))
is a subgraph of G such that each node v ∊	V is linked with the K of its nearest neighbours. An edge eij Î E is
included in EKNN if the distance between vi, and vj is among the K-th smallest distances from vi to other nodes
in V. The RNG, which we denote as GRNG (V, ERNG, WRNG), is constructed as follows: an edge eij is included in
ERNG if and only if: dij ≤ max {dix,dxj}, ∀ x ≠ i, j, where dij is the distance between objects i and j. We refer the
reader to more information about these proximity graphs (as well as the Gabriel Graph and the Delaunay
Triangulation) in references [23, 25].

Next, we explain how a proximity graph is constructed from a given dataset. Let Hm,n be an m´n matrix where
m represents the number of features, n indicates the number of samples and hij holds the value of feature i in
the sample j. Let Cn be an n dimensional array where cj holds the class label of the sample j. Assume that a

 5

subset of k features is selected, then an n´n dimensional dissimilarity matrix Dn,n can be calculated using only
these k features. For instance, D={dij} can be computed using the Euclidean distance metric between samples
i and j over the selected features. As an example, consider a dataset represented by the matrix H7,5 in Figure
1(a) and suppose the subset {f2,f4,f6} is selected. Figure 1(b) shows the dataset containing only the selected
features H3,5. Next, a distance matrix D5,5 is calculated (Figure 1(c)) using the dataset from Figure 1(b).

 (a)

Figure 1. (a) An example of a dataset Hm,n with m = 7 features and n = 5 samples. (b) The reduced dataset Hk,n
with the selected subset of features {f2,f4,f6}. (c) A distance matrix D5×5 considering only the reduced dataset H3,5.

Given D, we can have a complete, undirected and weighted graph G(V,E,W), where each node in V represents
a sample (i.e. |V|= n), E is the set of edges between a pair of samples, and W is the set of weights of each edge
with wij = dij. Figure 2(a) shows the graph representation of the dataset H3,5 from Figure 1(b) with the weights
from the distance matrix D5,5 from Figure 1(c). The nodes in the graph are labelled using black for class 0 and
white for class 1. We now can compute a proximity graph from G. Figure 2(b) shows the MST constructed
from the graph in Figure 2(a).

 (a) (b)

Figure 2. (a) The graph G (V,E,W) represents the distance matrix D where the samples from two classes are
labelled using black and white nodes respectively. (b) A MST is constructed from G where only one edge

connects samples from different classes (red edge).

Note that a different subset of features will give a different dissimilarity matrix leading to a different proximity
graph. The evaluation of the subset of features related to a specific proximity graph is described next.

2.1. Evaluating feature sets

Now, the set of features used to construct the proximity graph can be evaluated. In this work, we suggest
evaluating the quality of the subset of features based on its size, which we will denote as k (not to be confused

5

1 2

4

3 5

1 2

4

3

10
.7

5.78

9.6
8

8.58

3.11 7.
18

6.63

10.5

2.34

1.31

5.78

8.58 2.34

1.31

Samples

s1 s2 s3 s4 s5

Fe
at

ur
es

f1 7.01 4.36 5.72 2.47 8.82
f2 3.94 0.73 5.25 6.29 6.31
f3 2.30 6.42 2.80 8.43 4.92
f4 0.11 4.67 0.06 1.37 9.30
f5 9.56 5.90 8.22 5.11 5.61
f6 7.17 8.69 7.20 5.56 2.28
f7 6.83 2.58 1.56 4.58 8.17

Class(Cn) 0 0 1 1 1

 s1 s2 s3 s4 s5
 f2 3.94 0.73 5.25 6.29 6.31

f4 0.11 4.67 0.06 1.37 9.30
f6 7.17 8.69 7.20 5.56 2.28

Classes 0 0 1 1 1
 (b)

 Dij =

⎣
⎢
⎢
⎢
⎡

0 5.78
5.78 0

1.31 3.11 10.7
6.63 7.18 9.68

1.31 6.63
3.11
10.7

7.18
9.68

0 2.34 10.5
2.34
10.5

0
8.58

8.58
0 ⎦
⎥
⎥
⎥
⎤

(c)

 6

the number of neighbours considered in a K-NN graph) and/or the number of edges connecting nodes (samples)
from different classes (denoted by e) in the built proximity graph. We proposed four evaluation criteria:

Mine: In this criteria, the objective is to choose the subset of features that minimises the number of edges, e,
connecting samples from different classes in the constructed proximity graph.

Mine: Minimise (e) (1)

MineMink: Since it is important to reduce the size of the feature set, this criterion aims to minimise the sum
of the normalised e and normalised size of feature set (k).

MineMink: (2)

The previous two evaluation criteria do not take into account the weight of the edges. It is possible that two
different solutions could produce two different proximity graphs with the same value of e, but the weights of
the interclass edges could be different, which would indicate a different quality of features. To better
discriminate samples from different classes we should also try to maximise distances between samples of
different classes. For that reason, we define a new score, named proximity graph score (PGscore), for a given
proximity graph Gprox (V, Eprox, Wprox) and use it evaluating features. Assuming we have a bipartition of V in VA
and VB (where VA and VB are the sets of samples that belong to class A and B, respectively), we can define a
score for Gprox as follows:

 (3)

We can then define the other two evaluation criteria by using PGscore in Equation (3).

MineMaxPGscore: In this criterion, we favour the feature sets that bring the samples from the same class
closer and keep the samples of different classes apart. In this case, the objective is to minimise the ratio between
the number of edges, e, and the PGscore(A,B)

MineMaxPGscore: (4)

MineMinkMaxPGscore: Like MineMink, in this criterion we consider the number of interclass edges (e) and
the feature set size (k) as well as PGScore. In this case, the objective is to minimise the ratio between the sum
of the normalised e and normalised k values and the PGscore(A,B)

MineMinkMaxPGscore: (5)

The four evaluation criteria defined above are used as the fitness function in the proposed MA for exploring
the feature space as explained in the next section.

3. Memetic algorithms for searching the feature space

Memetic Algorithms (MA), first introduced by Moscato in 1989 [26], is a population-based metaheuristic that
has proven to be very efficient tackling practical optimisation problems in a variety of applications [38]. The
key strategy behind MAs is to hybridise the recognised strength of a population-based method with the
intensification capability of a local search to take advantage of both paradigms. Studies on MAs have
confirmed that these algorithms are better capable of exploring the search space for complex problems than
the traditional evolutionary algorithms (EAs) [20]. Moreover, it also has been shown that MAs can successfully

÷
ø
ö

ç
è
æ +

- m
k

n
e

Minimise
1

}{min}{max1

11
),(||||

ijwijw

ww
BAPGscore

B
B

B
B

B
B

BA
A

A

Vj
Vi

Vj
Vi

Vj
Vi

ijVVj
Vi

ijV

Î
Î

Î
Î

Î
Î

Î
Î

-+

å-å
=

÷÷
ø

ö
çç
è

æ
),(

:3
BAPGscore

eMinimiseF

÷
÷
÷
÷

ø

ö

ç
ç
ç
ç

è

æ +
-

),(
1:4

BAPGscore
m
k

n
e

MinimiseF

 7

produce efficient and effective results for many NP-hard combinatorial optimisation problems, including the
feature selection problem [27, 28].

We adopted one of the most commonly used MA frameworks, one in which a basic genetic algorithm (GA)
provides the global exploration capability and some local search (LS) algorithm contributes achieving the
exploitation of the search space. Furthermore, we also proposed an adaptation scheme for balancing the global
search and the local search capabilities. The MA searches for the optimal feature sets which are evaluated by
constructing proximity graphs as explained in the previous section. Therefore, we call this method Feature
Selection with Proximity graph using Memetic Algorithm (FSPMA). In the following subsections, we explain
different components of our algorithm.

3.1. Memetic Framework

The memetic framework used in this work is shown in Algorithm 1. As specified before, the global search
capability is provided by a standard GA. In our previous work [22], we carried out extensive computational
experiments to evaluate several GAs implemented for feature selection using MST. We have implemented two
strategies: Steady State GA (SSGA) and Generational GA (GGA) using different combinations of operators
and parameters. The performance of these algorithms was evaluated using four datasets, and one of the
Generational GAs exhibited significantly better performance over the others, which is the one chosen as the
global search algorithm in our memetic framework. Next, we describe each component of the algorithm.

Population: The population is a collection of individuals where an individual is a set of parameters that
describe a single solution to the target problem, which in our case is a subset of features. We represent each
individual using a binary array (s) of size m (total number of features), where sj=1 if feature j (j=1,..,m) is
selected, sj=0, otherwise.

First, the population P, structured as a list of p individuals and their corresponding fitness values, is created by
initialisePop(). The method randomly initialises each of the p individuals in the population. In order to increase
the diversity of the population as well as to control the size of the feature sets being selected we use an
initialisation bias inspired by [29]. First, the number of selected features in the i-th individual, denoted as
size(Pi), is determined using a linear function defined in Equation (6).

𝑠𝑖𝑧𝑒(𝑃!) = -"!"##"!$%
$

∗ 𝑖 + 𝑥%!&1 ; where		1 ≤ 𝑖 ≤ 𝑝 (6)

Accordingly, the size of the selected subset of features will range between two parameters: xmin (the minimum
number of selected features) and xmax (the maximum number of selected features). In our implementation, the
value of xmax and xmin is set to 50% and 5% of m, respectively. After calculating size(Pi), the i-th individual is
created by randomly selecting size(Pi) number of features in Pi. initialisePop() guarantees that each individual
in the population is unique and assigns a fitness value, which is one of the four evaluation criteria (i.e. Mine,
MineMink, MineMaxPGscore, MineMinkMaxPGscore) which have been introduced in Section 2.1.

 8

Algorithm 1: The proposed memetic algorithm (FSPMA).
p: number of individuals in the population
P: population of individuals and their fitness values (|P|=p)
q: number of offspring in each generation
Q: the set of offspring and their fitness values (|Q|=q)
PLS: local search probability (PLS = 0.50)
01 P ← initialisePop()
02 for j ← 1 to 10%*p do
03 Ind ← randomly select an individual from P
04 Ind ← localSearch (Ind)
05 P ← updatePop(P, Ind)
06 Repeat
07 Q ←{}
08 Repeat
09 selectParents(Parent1, Parent2)
10 Offspring ← crossover(Parent1, Parent2, rcrossover)
11 Offspring ← mutation(Offspring, rmutation)
12 fitness(Offspring)
13 if a rand(0,1) > PLS then
14 offspring ← localSearch (offspring)
15 if offspring is not in Q then
16 Q ← add(Q,offspring)
17 i++
18 until i = q
19 P ← updatePop(P, Q)
20 updatePLS()
21 until Stop1 or Stop2

Genetic Operators: Initially, selectParents(Parent1, Parent2) select the parents from the current population
using tournament selection. The tournament strategy selects two different sets of individuals from the current
population: set1 and set2. In each set, five different individuals are chosen randomly such that set1 ∩ set2 =
Ø. The fittest individual in set1 and set2 becomes Parent1 and Parent2, respectively.

Next, the crossover(Parent1, Parent2) employs the uniform crossover operator with a crossover rate of rcrossover

= 40% to create a new individual Offspring. The generated Offspring then undergoes mutation operation,
mutation(Offspring), which is implemented using 1-flip mutation with a mutation rate of rmutation = 5%.

In each generation, a group of q offspring, denoted by Q, is created from potentially q different parent pairs
through crossover and mutation. Next, the generated set of offspring, Q compete with the individuals in the
current population, P, for survival. The updatePop(P, Q) selects the fittest p individuals from p+q candidates
(i.e. the p individuals in the current population and the q new offspring created in each generation) for
constituting the population of the next generation.

The iterative search continues until either of the two stopping criteria has been met. The first criterion, Stop1,
is to terminate if a predetermined maximum number of fitness evaluations Evalmax =10000 has elapsed; and
the second criterion, Stop2, is to terminate if the best individual is unchanged for a maximum number of fitness
evaluations BEvalmax = 1000.

3.2. Local Search

The other key component in the MA framework is the Local Search (LS) algorithm which performs an intense
search in the neighbourhood of an individual. The purpose of a LS algorithm is to improve the current solution
to the local optimum by exploiting the local neighbourhood of a solution. The success of a LS algorithm
depends on many things: the aptitude of the LS algorithm to exploit the neighbourhood, the frequency and the
length of the local search, the quality of the individual undergoing a local search, etc. [30].

We designed five different LS search algorithms (LS1, LS2, LS3, LS4 and LS5). The general structure of these
LS algorithms is shown in Algorithm 2. The LS scheme continues the search as long as it can improve the

 9

current solution and stops after a maximum number of failed attempts (maxNumberAttempts = 10) to improve
the current solution. All five LS algorithms work within this framework, but employ different neighbourhood
definitions. Next, we describe the neighbourhood definition employed in each LS.

Algorithm 2: Local Search algorithm structure.
localsearch(currentSolution)
01 failure ← 0
02 while failure < maxNumberAttempts do
03 failure ← failure + 1
04 newSolution ← create a new neighbouring solution from currentSolution
05 if newSolution.fitness < currentSolution.fitness then
06 currentSolution ← newSolution
07 failure ← 0
08 return(currentSolution)

LS1: A neighbouring solution (newSolution) is created by randomly flipping one position in the current
solution (currentSolution).

LS2: First, a position (feature) x in the currentSolution is chosen randomly and its nearest neighbouring y,
using Euclidean distance, is identified. If both x and y are the same (i.e. they both are 0 or both are 1), then
create the newSolution by randomly flipping one of the two positions (x or y).

LS3: Same as in LS2, two neighbouring positions x and y in the currentSolution are identified. If x and y are
different (i.e. one is 0 and the other is 1) then create the newSolution by swapping the values of x and y.

LS4: LS4 applies both LS2 and LS3. In other words, after selecting the neighbouring positions x and y, if both
x and y are the same (i.e. they both are 0 or both are 1) then the newSolution is created by randomly flipping
one of them. If x and y are different (i.e. one is 0 and the other is 1) then the newSolution is created by swapping
their values.

LS5: The LS5 algorithm begins by identifying the nearest neighbour of each feature (using Euclidean
distance). Next, for all selected features in the currentSolution (for all positions with value 1), the neighbour
features are identified. The newSolution is created by selecting these neighbour features, and we call this
newSolution reflection of currentSolution. If the newSolution is not better, then the currentSolution is changed
using a modified version of LS4 where x is chosen randomly, and y is chosen as the reflection of x.

3.3. Adaptive balance between global search and local search

The synergy between the global and local searches is an essential aspect for the success of MAs. In order to
design an effective searching mechanism, by taking advantage of both paradigms, we need to combine the
exploration capability of GA and the exploitation capability of LS in a well-balanced manner [31]. Heavy
exploitation coupled with little exploration may result in premature convergence of the search. On the other
hand, shallow exploitation paired with too much exploration may slow-down the convergence of the search.
Additionally, the best length and the frequency of the applicability of the local search is often problem
dependent [32]. Therefore, an excellent and suitable strategy would be to balance the extent of both search
paradigm adaptively taking feedback from the search itself [31].

In this work, we propose to distribute the search time between the LS and GA adaptively depending on how
each search component performed in recent history – an idea originally proposed by Ishibuchi et al. [31]. We
used a parameter called probability of LS (PLS), similar to [31], to find this balance. Initially, the PLS = 0.5
which means we select 50% offspring to undergo the LS. During the search, we keep track of the performance
of the LS. For all the offspring that undergo LS, we count how many of those were improved (nLSImproved),
how many of those were not improved (nLSnotImproved), the average fitness of the offspring improved by the LS
(FitLSImproved), the average fitness of the offspring not improved by the LS (FitLSnotImproved). At the end of each
generation, we update the PLS value using the records of LS performances in the last generation. We give more

 10

emphasis to the LS (increasing the value of PLS) if it continuously improves the offspring, otherwise, the
probability of the global search is increased (i.e. the value of PLS is decreased). In this way, the computational
time (number of fitness evaluations) is adaptively allocated between the global search and the LS based on
their relative performance. Algorithm 3 depicts the proposed updatePLS() procedure. The procedure considers
only the subset of the offspring that are subject to LS, PLS is increased by 0.03 or decreased by 0.02 at a time
and kept between the values 0.1 and 0.75.

Algorithm 3: Adjusting the PLS value.
updatePLS()
FitLSnotImproved: the average fitness value of the solutions not improved by the LS
FitLSImproved: the average fitness value of the solutions improved by the LS
nLSnotImproved: number of the solutions not improved by the LS
nLSImproved: number of the solutions improved by the LS
01 if (nLSImproved = 0) or (FitLSImproved > FitLSnotImproved) then
02 PLS = max(0.1, PLS – 0.02)
03 else if (nLSnotImproved = 0) or (FitLSImproved ≤ FitLSnotImproved) then
04 PLS = min(0.75, PLS + 0.03)
05 return (PLS)

4. Computational results

This section presents the computational experiments we performed to establish the effectiveness of the
proposed method. The experiments performed over multiple datasets exhibit the superiority of the memetic
algorithm over the genetic algorithm. The suitability of different proximity graphs for the proposed method
has also been investigated. Furthermore, the contribution of different components in the proposed memetic
algorithm such as the local search and the adaptive mechanism are also examined.

4.1. Datasets

We used four well-known binary classification datasets that are available in the public domain for future
reproducibility and comparability with past studies. The characteristics of these four datasets used are
summarised in (Table 1) and described next.

Shakespearean era plays and poems dataset: This dataset contains 256 literary works from the
Shakespearean era. The two binary classes in this dataset are plays (202) and poems (54). The “frequency of
use” of 220 functional words have been extracted from a cohort of 66907 words previously analysed by Arefin
et al. in [4]. The observed frequencies in the different works of these 220 functional words are used as features.
The goal is to identify ‘a subset of functional words’ that can group the works into the two classes: plays and
poems.

Alzheimer’s disease datasets: These datasets were introduced by Ray et al. [33] and they pose several
classification problems. We work with the two first datasets in which the objective is to identify a subset of
relative abundances of 120 proteins that could distinguish clinical symptoms of Alzheimer’s Disease (AD)
five years in advance in comparison against the Non-Demented Control (NDC) group [34]. The training dataset
contains the relative abundances (z-scores to be used as features) measured on 83 people belonging to two
classes: 43 AD and 40 NDC samples. The test dataset contains 120 protein measures of 81 patients classified
into two classes – 42 AD samples and 39 NDC samples. We note that the original test dataset also contains 11
samples labelled as ‘Other Dementia’ (OD) samples, but these are excluded from our analysis to keep it a
binary classification problem.

 11

Table 1 Datasets used for evaluating the FSPMA method
Dataset Name Features Samples Classes

Shakespearean era plays and poems [35] 220 256 Play 202
Poem 54

Alzheimer’s disease [33]

training 120 83 AD 43
NDC 40

test 120 81 AD 42
NDC 39

Colon dataset [36] 2000 62 Tumour tissue 40
Normal tissue 22

Embryonal tumour [37] 7129 59 Survivors children 20
Failures children 39

Colon dataset: The colon dataset [36] consists of the expression of 2000 genes (originally 6000 gene
expression levels were measured; 2000 were selected based on the confidence in the measurement) with
highest minimal intensity across the 62 samples of colon epithelial cells collected from colon-cancer patients:
22 Normal tissues and 40 Tumour tissues. The goal is to find a subset of genes that can classify Normal tissues
and Tumour tissues For more information about the Colon dataset please refer to [36] and it is available on the
public domain from the http://genomics-pubs.princeton.edu/oncology/ website.

Embryonal tumour dataset: The data originates from the study of 59 human tissue samples obtained from
children with different brain tumours with medulloblastomas [37] associated with the Committee for Clinical
Investigation of Boston Children's Hospital. The Dataset C from this study is used as an input instance in this
work and is downloaded from http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi website. These
samples were labelled into two classes: “survivors” (20) and “failures” (39) (labels taken verbatim from [37]).
From the frozen tumour samples RNA was isolated and hybridised to an array containing 7129 probes. The
goal is to select a subset of those 7129 probes that can define the best separation of “survivors” and “failures”.

4.2. Experimental setup

As mentioned in Section 3.1, the setup of the best performing GA from [22] was selected (it is called GGA4
in [32]) as the global search algorithm in our experiments. Therefore, our proposed memetic algorithm
(FSPMA) works with a population of 100 individuals, uses tournament strategy for parent selection and applies
uniform crossover and 1-flip mutation for offspring generation as described in Section 3.1. All the algorithms
were coded in Python 2.7 and executed under the Unix operating system in a machine with Dual Xeon 2.67
GHz, eight cores and 32 GB RAM.

4.3. Performance of the LS algorithms

Before embedding the LS algorithms in the memetic framework, we evaluated the standalone performance of
the designed LS algorithms. We assessed the performance of each LS algorithm, regarding fitness score and
time requirement, in improving the quality of a random solution. The study uses all the datasets described in
Section 4.1, but only the Mine fitness criterion. For each dataset, 50 random solutions are generated and each
LS strategy is applied to them. Table 2 shows the results of this experiment regarding average fitness value
(Fit) of these 50 solutions before and after applying different LS strategies and the average time in seconds
taken by each tested LS strategy. The best performing strategy (in terms of average fitness score) is highlighted
for each dataset.

Table 2: Performance of LS schemes in Mine fitness criterion on different datasets.
 Shakespeare Alzheimer’s disease Colon cancer Embryonal tumour

Local search Fit Time Fit Time Fit Time Fit Time
Initial solution 13.84 20.30 14.20 24.92
LS1 12.84 1.63 17.96 0.18 13.98 0.41 24.86 1.63
LS2 13.08 0.69 18.64 0.06 14.10 0.25 24.88 0.90
LS3 12.96 0.51 18.66 0.05 14.08 0.17 24.82 0.53
LS4 12.52 1.29 18.30 0.13 14.04 0.39 24.80 1.40
LS5 13.60 0.93 18.16 0.10 13.00 0.25 22.66 0.40

 12

According to the results in Table 2, all the proposed LS strategies have the ability to improve the quality of
the solution, but it is not conclusive which LS has the best performance in regard to quality of solution and
required time. Therefore, we incorporated each of the proposed LS strategies with the global search algorithm
and designed five MAs .

4.4. Benefit of adaptive balancing mechanism

All the MAs studied in this work were designed by embedding one of the five LS strategies in the MA
framework of Algorithm 1. We denoted the MAs as MA1 (LS1), MA2 (LS2), MA3 (LS3), MA4 (LS4) and
MA5 (LS5) where the LS strategy incorporated in them are shown in the parentheses.

Next, we performed some specific experiments to show that the proposed adaptive scheme is useful to
determine a right balance between local and global searches in the MAs and improve their search performance
thereby. As described earlier, the balance between local and global searching is controlled by the PLS parameter
in Algorithm 1. Therefore, we experimented by creating two variants of each MA one of which keeps PLS=50%
fixed (denoted by MA1-F, MA2-F, MA3-F, MA4-F and MA5-F) and the other changes it adaptively according
to Algorithm 3 (denoted by MA1, MA2, MA3, MA4 and MA5). In this experiment, we use only the AD
training dataset and the Mine fitness function. Each MA is repeated 50 times. Each row of Table 3 shows the
average of 50 executions in terms of the fitness value (Fit), number of selected features (k), running time in
seconds (Time), number of fitness evaluations in the global search (EvGS), number of fitness evaluations in
the local search (EvLS), time spent in the local search (LSTime) and the average PLS values obtained by the
updatePLS() method.

Table 3: Comparison between MAs with fixed PLS and adaptive PLS in the Alzheimer’s disease dataset with Mine
fitness criterion.

Fit k Time EvGS EvLS LSTime AveragePLS
MA1-F 4.60 40.54 325 4275 23556 260
MA1 4.60 41.36 264 4062 18740 207 0.41

MA2-F 4.62 40.58 190 3745 11344 125
MA2 4.44 41.26 236 3927 14889 164 0.62

MA3-F 4.41 40.76 173 4338 9411 102
MA3 4.34 40.12 241 4317 14830 160 0.70

MA4-F 4.62 39.72 322 4048 24487 257
MA4 4.60 41.96 414 4041 32795 344 0.64

MA5-F 4.61 40.66 530 3940 41770 424
MA5 4.64 41.28 117 4498 5720 58 0.11

The results in Table 3 show that the adaptive PLS was helpful in achieving a better fitness score in MA2, MA3
and MA4. In these three MAs the local search schemes were successful in improving the fitness scores of the
individuals; therefore, the average PLS score was higher than 0.50. On the other hand in MA1 and MA5 the
adaptive strategy was performing similar and worse to fixed PLS, respectively using a much smaller number of
fitness evaluations in local search. Looking at the average PLS score we can see that the local search scheme
was not useful to improve individual’s fitness score and therefore the average PLS was less than 0.5. In terms
of computational time, the adaptive LS strategy was more efficient than the fixed LS strategy in the number
of fitness evaluation used in local search. Based on these observations, we argue that the adaptive PLS was
useful to balance between global and local searches and helped to explore the search space effectively to find
a better solution. Therefore, we adopted the adaptive balance in the MAs. Next, we present the extensive
computational tests of the MAs using all datasets.

4.5. Performance of the memetic algorithms

After we have ascertained the benefit of the local search schemes and the benefit of the adaptive balancing
strategy, we compared the five MAs in all four datasets, using the four fitness criteria. We run each MA 50
times for each fitness criterion on each dataset using the same experimental setup. Tables 4–7 present the
results obtained for each dataset, where each row shows the average of 50 runs. The performance of the MAs
was compared with their common parent genetic algorithm GA. We also run GA allowing to use the same

 13

number of fitness evaluations used by the best-performing MA (MA3), which is shown in the tables by GA+.
The aim is to show that the hybridisation between the LS and the global search can produce better results than
GA even with the same total number of fitness evaluations. Each table shows the average of best fitness values
(Fit), the average number of inter-class edges (e), the size of selected subset of features (k), the average
execution time in seconds (Time), the average total number of fitness evaluations for global search (EvGen),
the average number of fitness evaluations in the LS (EvLS) and the average total local search running time
(LSTime). The tables also show the p-value result of a Wilcoxon test between the best-performing MA (MA3)
and each method.

For the Shakespeare dataset (Table 4), MA3 achieved the best or equal best average fitness scores when
compared to other algorithms. Almost half of the Wilcoxon p-values (11 out of 24) were significant (£0.05).
MA2 and MA3 gave the same results using Mine criterion. In addition, MA3 did not exhibit notably different
behaviour using the MineMink fitness criterion. In the case of the AD training dataset (Table 5), the MA3
performed significantly better than the other methods in most cases (83% of Wilcoxon p-values were less than
or equal to 0.05). In addition, MA3 required less time in most cases. For the colon cancer dataset (Table 6),
MA3 outperformed other methods significantly as 92% of Wilcoxon p-values indicated that the MA3 results
were significantly better than the other methods. Another advantage of MA3 is that it achieved the best results
in less time than the other MAs. Finally, the results obtained when we used the embryonal tumour dataset
(Table 7) show 71% of Wilcoxon p-values were less than or equal to 0.05, indicating a significantly better
performance by MA3. Using Mine, MA2 obtained better results than MA3, but the difference was not
statistically significant (p = 0.12) and MA2 required more computational time. Using MineMink, MA3 and
MA5 achieved the same result, but again, MA3 required less computational time. It is also worth mentioning
that MA3 achieved significantly better results in most of the cases when compared with GA+ in all four
datasets which establish the superiority of memetic search over pure genetic search. Based on the results from
Tables 4–7, it can be concluded that MA3 outperformed the other algorithms where MA3 was significantly
better (p £ 0.05) than the other methods in 77% of Wilcoxon tests.

 14

Table 4: Performance of different algorithms on Shakespeare dataset using different fitness criteria

Fit k e Time EvGen EvLS LSTime p-value

M
in

e

MA1 1.44 60.84 1.44 2277 2477 17403 1904 0.06
MA2 1.22 61.16 1.22 1497 2441 9192 1054 0.43
MA3 1.22 58.00 1.22 1256 2531 6962 800 --
MA4 1.68 61.02 1.68 2303 2334 17851 1908 0.05
MA5 1.58 59.86 1.58 685 2496 3887 365 0.04
GA 1.70 59.00 1.70 541 2560 -- -- 0.02
GA4+ 1.50 32.19 1.50 1700 9500 -- -- 0.01

M
in

eM
in

k

MA1 0.08 13.78 3.48 1844 9968 12371 774 0.08
MA2 0.07 13.34 3.62 1880 10000 10648 673 0.21
MA3 0.07 12.96 3.62 1759 10000 12403 740 --
MA4 0.08 13.66 3.72 1834 10000 19055 1140 0.06
MA5 0.08 14.42 3.88 1745 10000 14357 1090 0.09
GA 0.08 15.28 4.26 713 10000 -- -- 0.07
GA+ 0.07 11.92 3.98 1770 22400 -- -- 0.34

M
in

eM
ax

PG
sc

or
e

MA1 6.07 112.42 2.80 2358 2447 19577 2030 0.03
MA2 5.39 113.72 2.46 1631 2454 10072 1177 0.07
MA3 5.35 115.68 3.00 1638 2464 9881 1165 --
MA4 5.61 114.26 2.60 2662 2523 22156 2273 0.01
MA5 6.08 111.00 3.00 983 2432 6881 648 0.00
GA 6.11 111.14 2.82 515 2475 -- -- 0.00
GA+ 5.44 116.40 3.70 1820 12300 -- -- 0.04

M
in

eM
in

kM
ax

PG
sc

or
e MA1 0.30 29.30 12.78 2574 10000 18502 1627 0.08

MA2 0.30 28.32 12.88 2460 10000 16215 1423 0.12
MA3 0.29 27.34 12.82 2916 9913 18625 1549 --
MA4 0.30 28.20 13.18 3589 9968 33912 2620 0.05
MA5 0.30 28.56 13.40 2546 10000 23154 1686 0.06
GA 0.34 33.24 13.76 761 10000 -- -- 0.00
GA+ 0.30 34.28 12.40 2922 28500 -- -- 0.08

Table 5: Performance of different algorithms on Alzheimer dataset using different fitness criteria

Fit k e Time EvGen EvLS LSTime p-value

M
in

e

MA1 4.60 41.36 4.60 264 4062 18740 207 0.02
MA2 4.44 41.26 4.44 236 3927 14889 164 0.05
MA3 4.34 40.12 4.34 240 4317 14830 160 --
MA4 4.60 41.96 4.60 414 4041 32795 344 0.02
MA5 4.64 41.28 4.64 117 4498 5720 58 0.01
GA 4.70 41.00 4.70 74 4160 -- -- 0.02
GA+ 4.43 30.72 4.43 285 19100 -- -- 0.05

M
in

eM
in

k

MA1 0.22 17.86 6.20 338 9948 16781 205 0.06
MA2 0.22 17.10 6.70 507 9924 37006 359 0.07
MA3 0.20 15.74 6.24 419 9903 22650 238 --
MA4 0.22 16.68 6.58 743 9930 68021 602 0.07
MA5 0.22 17.34 6.31 704 9984 43126 503 0.12
GA 0.23 17.04 7.68 49 10000 -- -- 0.04
GA+ 0.22 16.68 6.18 398 32500 -- -- 0.05

M
in

eM
ax

PG
sc

or
e

MA1 16.71 47.86 8.98 577 9552 27515 411 0.00
MA2 16.36 48.58 8.94 812 9648 38131 574 0.02
MA3 15.65 44.32 7.96 805 9675 38444 562 --
MA4 16.38 47.82 8.86 1303 9348 74820 1087 0.03
MA5 16.31 44.86 9.10 429 9520 21867 273 0.04
GA 18.70 46.04 9.62 134 10000 -- -- 0.00
GA+ 16.36 41.70 8.72 809 48100 -- -- 0.00

M
in

eM
in

kM
ax

PG
sc

or
e MA1 0.46 24.72 19.68 418 10000 22555 281 0.00

MA2 0.46 25.60 20.94 635 10000 36034 448 0.00
MA3 0.42 21.44 18.96 557 10000 29265 350 --
MA4 0.46 25.14 20.86 1076 10000 71801 886 0.00
MA5 0.47 24.94 20.94 419 10000 24602 282 0.00
GA 0.51 25.48 21.08 109 10000 -- -- 0.00
GA+ 0.47 21.72 19.06 664 39220 -- -- 0.00

 15

Table 6: Performance of different algorithms on colon cancer dataset using different fitness criteria

Fit k E Time EvGen EvLS LSTime p-value

M
in

e

MA1 5.22 389.32 5.40 360 1812 7410 275 0.04
MA2 5.04 386.12 5.04 234 1780 3845 145 0.33
MA3 5.04 408.62 5.04 135 1747 1131 51 --
MA4 5.28 381.68 5.28 344 1856 7131 258 0.04
MA5 5.40 342.70 5.50 187 1860 4669 112 0.00
GA 5.40 403.00 5.40 67 1840 -- -- 0.02
GA+ 5.24 278.30 5.24 155 5600 -- -- 0.04

M
in

eM
in

k

MA1 0.1654 172.50 4.76 236 1904 9060 188 0.01
MA2 0.1602 173.62 4.32 225 2008 8987 170 0.05
MA3 0.1575 166.82 4.32 83 2055 706 16 --
MA4 0.1672 173.60 4.84 282 2071 11921 227 0.00
MA5 0.1614 141.30 5.48 400 1933 22423 356 0.04
GA 0.1664 167.32 5.08 74 1978 -- -- 0.01
GA+ 0.1584 155.10 4.88 86 3000 -- -- 0.05

M
in

eM
ax

PG
sc

or
e

MA1 30.38 613.42 7.24 1696 1983 25576 1518 0.00
MA2 30.72 597.76 7.54 828 1972 10314 632 0.00
MA3 28.74 557.20 7.50 550 2051 6624 370 --
MA4 29.13 599.18 7.00 1182 2029 18624 1013 0.05
MA5 32.04 418.92 8.44 508 2256 15431 405 0.00
GA 32.07 587.58 7.58 227 2073 -- -- 0.00
GA+ 29.00 643.90 7.54 667 8640 -- -- 0.17

M
in

eM
in

kM
ax

PG
sc

or
e MA1 0.95 282.60 9.20 535 3334 14135 420 0.00

MA2 0.96 283.10 9.52 519 3265 12337 376 0.00
MA3 0.84 270.10 9.20 320 3523 5107 160 --
MA4 0.97 281.78 9.50 719 3303 18836 575 0.00
MA5 0.90 217.02 10.78 710 3549 29819 609 0.02
GA 0.96 272.80 10.10 161 3007 -- -- 0.00
GA+ 0.88 231.80 9.92 362 8600 -- -- 0.03

Table 7: Performance of different algorithms on embryo dataset using different fitness criteria

Fit k E Time EvGen EvLS LSTime p-value

M
in

e

MA1 8.80 1216.38 8.80 1144 2028 6002 827 0.05
MA2 8.52 1116.28 8.52 802 2069 3586 441 0.12
MA3 8.55 1251.10 8.50 564 2024 995 189 --
MA4 9.45 1134.08 9.45 985 2000 5399 701 0.02
MA5 9.08 702.94 9.08 391 2233 5251 200 0.00
GA 9.86 1268.00 9.86 263 2000 -- -- 0.00
GA+ 9.72 1222.22 9.72 560 3000 -- -- 0.00

M
in

eM
in

k

MA1 0.22 589.42 7.80 590 2184 8253 468 0.03
MA2 0.23 609.54 8.38 615 2280 6203 430 0.00
MA3 0.20 599.80 8.70 233 2097 572 57 --
MA4 0.23 599.22 8.24 743 2198 8037 584 0.00
MA5 0.20 345.14 8.44 801 2364 19974 682 0.37
GA 0.24 628.96 8.76 254 2183 -- -- 0.00
GA+ 0.24 618.60 8.76 285 2650 -- -- 0.00

M
in

eM
ax

PG
sc

or
e

MA1 35.50 2251.73 15.41 998 2224 29353 8919 0.04
MA2 35.90 2197.02 15.36 477 2284 11246 3573 0.05
MA3 33.43 2096.40 16.02 339 2141 6463 2190 --
MA4 34.62 2117.86 14.92 688 2282 20374 5855 0.05
MA5 35.72 2176.86 15.94 137 2064 6678 492 0.04
GA 36.15 2151.56 15.44 146 2327 -- -- 0.00
GA+ 33.77 2252.95 14.94 350 8600 -- -- 0.06

M
in

eM
in

kM
ax

PG
sc

or
e MA1 0.84 1049.94 17.46 2031 2886 13467 1607 0.42

MA2 0.90 1099.08 17.90 1649 2867 9099 1137 0.01
MA3 0.83 1120.98 17.38 661 2684 1310 219 --
MA4 0.88 1093.58 17.46 2210 3092 14009 1704 0.03
MA5 0.86 824.16 17.20 539 3001 10552 318 0.06
GA 0.88 1086.08 16.74 670 2963 -- -- 0.09
GA+ 0.85 1072.60 16.58 811 4000 -- -- 0.08

 16

4.6. Classification Results

In this section, we assess the practical use of the set of features obtained by FSPMA (using MA3) for
classification. In order to evaluate the classification performance of the different selected feature sets, we
adopted the methodology used in [17]. We used a total of 49 machine learning algorithms from the well-known
WEKA software package [50] (version 3.6.4). The list of classifiers used is shown in Table 8 along with their
respective types as categorised in WEKA.

Table 8: List of classifiers categorised by their types from WEKA [38] used in this work
Type Classifier
Bayes BayesNet, NaiveBayes, NaiveBayesUpdatable
Function Logistic, SimpleLogistic, RBFNetwork, SMO, SPegasos, VotedPerceptron
Lazy IB1, Kstar, LWL
Rules ConjunctiveRule, DecisionTable, Jrib, NNge, OneR, Part, Ridor
Tree ADTree, BFTree, FT, LADTree, LMT, DecisionStump, J48, J48graft, RepTree, NBTree, Random_Forest, RandomTree
Mesc HyperPipes, VFI

Meta
AdaBoost, AttributeSelectedClassifier, Bagging, ClassificationViaRegression, Dagging, Decorate, END,
FilteredClassifier, LogitBoost, MultiBoostAB, MultiClassClassifier, OrdinalClass, RandomCommittee,
RandomSub_Space, RotationForest, ThresholdSelector

For each of the MA3 results from Tables 4–7, the subset of features (out of 50 solutions) with the best fitness
value (Fit) was selected for evaluating the classification performance of each algorithm using 10-fold cross
validation. We then calculated the average accuracy (ACC) and the average Mathew’s correlation coefficient
(MCC) of the 49 WEKA classifiers for comparison.

As described in Section 3.1, the solutions in the initial population are created by setting the parameters as xmax
= m*50% and xmin = m*5% (Equation (6)), which has a direct influence on the number of features selected by
the algorithms. This effect of initialisation bias can be noticed by the number of selected features in Table 4-7
by different MAs. Since the number of selected feature also influences the classification accuracy, we re-ran
the MA3 algorithm with a different initial bias, specifically with xmax = m*10% and xmin = m*1%, in order to
obtain a smaller subset of features. To differentiate between these two different initialization biases we use the
term wide initialisation for xmax = m*50% and xmin = m*5% and narrow initialisation for xmax = m*10% and
xmin = m*1%. We compared the effect of these two initialization biases in Table 9 in terms of the fitness value
(Fit), the size of the subset of features (k), the number of edges that connect samples between different classes
in the MST (e), the required time in seconds (Time), total number of required fitness evaluations (Ev), average
MCC and average ACC for different fitness criteria and datasets. For each dataset and fitness function, the
best ACC and MCC results are highlighted.

The results presented in Table 9 show that initialisation using the narrow initialisation not only reduced the
size of the selected subset of features, but also had a positive effect by improving classification performance
in terms of MCC and ACC. No single fitness function was found to be consistently the best for all datasets.
However, MineMink achieved the best performance in two datasets and each of Mine and
MineMinkMaxPGscore achieved the best performance in one dataset.

 17

Table 9: Classification performance of MA3 algorithm using different initialization bias for different dataset and
fitness criteria.

Dataset Initialisation Fit e k Time Ev MCC ACC

Sh
ak

es
pe

ar
e

D
at

as
et

 Mine Wide 1 1 36 1108 8874 0.889 0.963
Narrow 1 1 17 1403 11080 0.903 0.967

MineMink Wide 0.08 1 18 2083 24021 0.889 0.963
Narrow 0.07 1 17 2126 24219 0.900 0.966

MineMaxPGscore Wide 2.29 1 35 1813 13066 0.882 0.961
Narrow 1.89 1 19 1615 14112 0.895 0.965

MineMinkMaxPGscore Wide 0.22 4 73 2741 24948 0.885 0.962
Narrow 0.16 3 13 2667 24006 0.888 0.962

Al

zh
ei

m
er

’
s d

at
as

et
 Mine Wide 3 3 38 213 22017 0.766 0.882

Narrow 2 2 12` 209 19113 0.786 0.892
MineMink Wide 0.16 3 15 378 30819 0.766 0.883

Narrow 0.1 3 8 319 28864 0.790 0.895
MineMaxPGscore Wide 12.34 3 34 775 40884 0.779 0.889

Narrow 10.09 2 15 789 44313 0.784 0.891
MineMinkMaxPGscore Wide 0.63 3 14 488 33498 0.774 0.887

Narrow 0.41 3 12 507 35204 0.785 0.892

Co

lo
n

D
at

as
et

Mine Wide 3 3 231 172 3092 0.606 0.821
Narrow 2 2 66 136 2832 0.622 0.827

MineMink Wide 0.12 4 109 77 3013 0.601 0.817
Narrow 0.06 2 69 70 3114 0.630 0.831

MineMaxPGscore Wide 15.64 5 402 566 9091 0.599 0.818
Narrow 6.63 4 71 487 8917 0.629 0.830

MineMinkMaxPGscore Wide 0.43 12 178 288 7891 0.610 0.822
Narrow 0.11 4 50 254 7402 0.653 0.842

Em

br
yo

na
l D

at
as

et
 Mine Wide 7 7 654 747 3314 0.257 0.683

Narrow 2 2 68 289 2988 0.456 0.756
MineMink Wide 0.41 4 436 205 2413 0.366 0.720

Narrow 0.08 2 70 140 2841 0.509 0.782
MineMaxPGscore Wide 23.42 11 594 986 8241 0.334 0.708

Narrow 2.16 6 73 310 8452 0.465 0.764
MineMinkMaxPGscore Wide 0.43 10 598 882 5082 0.385 0.730

Narrow 0.16 5 59 343 4894 0.465 0.764

The performance of the 49 classifiers in WEKA varies widely. Therefore, next, we calculated the average
MCC and ACC for the top five best performing classifiers. Table 10 depicts the results, where each row
contains the average from the five top performing classifiers (out of 49 classifiers listed in Table 8) for the
feature sets generated by FSPMA with narrow initialization.

Table 10: The average MCC and ACC for the pool of classifiers created by the best five performing classifiers in
different fitness functions.

 Dataset

 Shakespeare Alzheimer’s
disease

Colon
 cancer

Embryonal
tumour

 ACC MCC ACC MCC ACC MCC ACC MCC
All 0.971 0.914 0.864 0.728 0.800 0.552 0.631 0.141
Mine 0.979 0.937 0.925 0.851 0.846 0.663 0.798 0.539
MineMink 0.983 0.950 0.928 0.857 0.865 0.703 0.831 0.615
MineMaxPGscore 0.979 0.938 0.926 0.852 0.845 0.662 0.790 0.523
MineMinkMaxPGscore 0.975 0.925 0.925 0.851 0.859 0.692 0.787 0.518

The Table 10 evidently shows that the MineMink fitness function is always superior. The results of Table 9
showed that MineMink fitness function achieved the best average MCC and ACC results in two datasets
(Alzheimer’s and Embryo datasets). However, after selecting the five best-performing classifiers, it attained
the best results in all datasets.

Figure 3 illustrates the MST generated by FSPMA using the MineMink fitness function in each dataset. We
can see that in case of Shakespeare dataset, an ideal solution (single interclass edge) has been achieved where
the 202 samples in the ‘plays’ class represented as black nodes are perfectly separated from the 54 samples in
the ‘poems’ class represented as white nodes. The constructed MSTs have achieved the quasi-ideal solutions

 18

(few inter-class edges) in the other datasets. From these observations, we can see that FSPMA with MineMink
fitness criteria generates the highest quality feature sets that can separate the samples into different classes
very well.

(a) (b)

(c) (d)

Figure 3: The MST constructed for the feature set selected by MA3 with MineMink fitness function for (a)
Shakespeare (b) Alzheimer (c) colon and (d) embryo dataset. Inter-class edges are shown in red.

4.7. Feature Selection using other proximity graphs

In the previous sections, we presented extensive computational results of our approach (FSPMA) using the
MST as the proximity graph. In this section, for the generalisation of the hypothesis, we replace the MST in
the FSPMA with two other proximity graphs: the K-Nearest Neighbours (K-NN) and the Relative
Neighbourhood Graph (RNG). The aim is to examine the usefulness of these proximity graphs in the FSPMA
approach for feature selection and classification performance.

From the definition of K-NN graph presented in Section 2, it is clear that for different values of K, different
K-NN graphs can be defined. Since it is impractical to test all values for K, we have chosen the value of ‘K’
in the K-NN graph from K=1 to K=ëlog10(m) + 0.5û. For the Shakespeare and Alzheimer’s disease datasets,
only 1-NN and 2-NN are studied. Similarly, 1-NN, 2-NN, and 3-NN are used for the Colon dataset and 1-NN,
2-NN, 3-NN, and 4-NN are used for the Embryo dataset. We repeated the same approach as we applied with
MST. First, we run FSPMA (MA3) method 50 times for each proximity graph. The subset of features selected
by the individual that presented the best fitness value (Fit), out of the 50 runs, is selected. We then evaluated
the performance of the chosen feature subset using the 49 Weka classifiers with 10-fold cross validation. The
average ACC and MCC values obtained by these 49 classifiers is calculated and compared using different
proximity graphs. This process is repeated for each fitness criterion in each dataset.

The outcomes of this experiment are presented in Tables 11-14, where each table contains the results for each
dataset. The proximity graph that achieved the best classification accuracy (ACC and MCC) is shown in bold
for each fitness function.

 19

Table 11: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method
with different proximity graphs and fitness function in Shakespeare dataset.

 PG Fit e k Time Ev MCC ACC

Mine

MST 1 1 17 1403 11080 0.903 0.967
1NN 0 0 37 339 7733 0.891 0.963
2NN 0 0 55 629 8749 0.868 0.956
RNG 2 2 48 40223 13418 0.876 0.958

MineMink

MST 0.07 1 17 2126 24219 0.900 0.966
1NN 0.05 0 14 462.2 13557 0.893 0.964
2NN 0.07 2 15 1063 21460 0.875 0.958
RNG 0.08 10 14 67228 21300 0.858 0.953

MineMaxPGscore

MST 1.89 1 19 1615 14112 0.895 0.965
1NN 0 0 67 429 7447 0.875 0.958
2NN 2.82 1 89 1518 17494 0.844 0.949
RNG 10.8 5 103 60875 21454 0.835 0.945

MineMinkMaxPGscore

MST 0.16 3 13 2667 24006 0.888 0.962
1NN 0.25 6 26 1420 29080 0.836 0.945
2NN 0.4 6 36 2210 32519 0.873 0.958
RNG 0.33 15 23 80777 28066 0.821 0.940

Table 12: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method
with different proximity graphs and fitness function in Alzheimer’s dataset

PG Fit e k Time Ev MCC ACC
Mine MST 2 2 12 209 19113 0.786 0.892

1NN 1 1 36 92 8832 0.751 0.875
2NN 9 9 39 277 19568 0.746 0.872
RNG 5 5 46 1497 16334 0.727 0.862

MineMink MST 0.1 3 8 318 28864 0.790 0.895
1NN 0.15 5 10 47 5644 0.764 0.881
2NN 0.3 12 19 89 7628 0.769 0.883
RNG 0.24 6 19 2979 30250 0.773 0.886

MineMaxPGscore MST 10.09 2 15 789 44313 0.784 0.891
1NN 3.23 1 37 216 19265 0.744 0.871
2NN 25.85 14 48 519 38620 0.731 0.865
RNG 16.25 10 35 2166 24651 0.722 0.860

MineMinkMaxPGscore MST 0.41 3 12 506 35204 0.785 0.892
1NN 0.34 11 23 93 10742 0.732 0.865
2NN 0.56 21 22 459 37949 0.740 0.869
RNG 0.42 24 26 2932 34656 0.754 0.876

Table 13: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method
with different proximity graphs and fitness function in colon cancer dataset

PG Fit e k Time Ev MCC ACC
Mine MST 2 2 66 136 2832 0.622 0.827

1NN 0 0 117 27 1750 0.551 0.794
2NN 6 6 101 34 1981 0.551 0.794
3NN 3 3 146 71 2692 0.530 0.786
RNG 5 5 117 124 2803 0.524 0.781

MineMink MST 0.06 2 69 69 3114 0.630 0.831
1NN 0.07 1 114 37 2287 0.513 0.776
2NN 0.12 4 107 49 3154 0.553 0.797
3NN 0.10 2 137 75 3012 0.547 0.793
RNG 0.12 4 93 226 5357 0.538 0.787

MineMaxPGscore MST 6.63 4 71 487 8917 0.629 0.830
1NN 5.12 5 123 142 7996 0.513 0.781
2NN 9.48 11 124 111 5631 0.489 0.765
3NN 8.93 3 212 178 5434 0.524 0.785
RNG 5.98 12 159 461 9456 0.516 0.779

MineMinkMaxPGscore MST 0.11 4 50 254 7402 0.653 0.842
1NN 0.33 2 130 40 2478 0.514 0.780
2NN 0.17 12 126 111 6045 0.525 0.785
3NN 0.54 29 186 191 6486 0.503 0.774
RNG 0.11 10 109 438 8810 0.530 0.788

 20

Table 14: Average ACC and MCC of 49 classifiers for the best subset of features generated by the MA3 method
with different proximity graphs and fitness function in embryonal tumour dataset

PG Fit e k Time Ev MCC ACC
Mine MST 2 2 68 289 2988 0.456 0.756

1NN 1 1 56 12 3120 0.473 0.768
2NN 1 1 88 56 5245 0.453 0.761
3NN 0 0 73 64 4497 0.462 0.765
4NN 0 0 81 45 2657 0.461 0.765
RNG 4 4 54 487 10302 0.460 0.766

MineMink MST 0.08 2 70 140 2841 0.509 0.782
1NN 0.09 1 45 11 2800 0.488 0.777
2NN 0.10 0 52 71 6226 0.437 0.754
3NN 0.15 0 76 47 3290 0.435 0.749
4NN 0.11 0 57 118 6136 0.469 0.768
RNG 0.18 5 57 168 3901 0.447 0.760

MineMaxPGscore MST 2.16 6 73 509 8452 0.465 0.764
1NN 0.14 19 67 77 17717 0.194 0.653
2NN 0.41 41 107 280 21340 0.222 0.670
3NN 0.71 65 56 400 28408 0.210 0.664
4NN 0.64 83 111 574 29067 0.217 0.673
RNG 0.19 21 71 770 16914 0.337 0.719

MineMinkMaxPGscore MST 0.16 5 59 343 4894 0.465 0.764
1NN 0.02 11 48 10 2743 0.405 0.743
2NN 0.01 40 65 159 16207 0.362 0.726
3NN 0.01 60 52 211 15976 0.347 0.717
4NN 0.01 88 49 463 26115 0.278 0.694
RNG 0.00 20 76 519 12884 0.366 0.729

In all four datasets, MST demonstrated superiority in terms of MCC and ACC over other proximity graphs.
The classification performance of the FSPMA using MST generated feature sets with the best fitness over
different datasets. The next best-performing proximity graph was the 1-NN, which also attained the best results
in the case of the embryonal tumour dataset using the Mine fitness function. Moreover, as expected, 1-NN was
the best-performing proximity graph in terms of execution time (i.e., the time required to run the MA3 code
using the corresponding proximity graph) and 2-NN came next. On the other hand, the execution time required
by RNG was often ten times or even more than that required by 1-NN. As reported earlier, FSPMA achieved
the best fitness value using Mine and MineMink fitness functions.

Next, as we have done in the previous section, for each fitness function and dataset, we selected the five top-
performing classifiers (out of 49 classifiers) for the feature sets generated by the different proximity graphs
(MST, K-NN and RNG) and we calculated the average MCC and ACC obtained by the top five classifiers,
which are summarized in Table 15. When the selected feature sets were evaluated using high-quality
classifiers, the superiority of the MineMink fitness function with MST is unanimously established over other
fitness functions. The results in Table 15, once again highlight that the feature sets selected using MST and
MineMink fitness function are superior to the other proximity graphs and other fitness functions.

 21

Table 15: Average ACC and MCC for the pool of classifiers created by accumulating the best five performing
classifiers in different proximity graphs.

 Mine MineMink MineMaxMSTscore MineMinkMaxMSTscore
 ACC MCC ACC MCC ACC MCC ACC MCC

Shakespeare

MST 0.982 0.948 0.983 0.949 0.980 0.941 0.982 0.948
1NN 0.980 0.941 0.973 0.921 0.978 0.936 0.973 0.921
2NN 0.976 0.929 0.969 0.907 0.969 0.907 0.981 0.945
RNG 0.975 0.926 0.969 0.908 0.976 0.929 0.959 0.876

Alzheimer’s
disease

MST 0.936 0.874 0.942 0.883 0.933 0.866 0.930 0.861
1NN 0.906 0.813 0.881 0.762 0.906 0.814 0.898 0.798
2NN 0.911 0.823 0.915 0.830 0.900 0.802 0.898 0.796
RNG 0.901 0.803 0.890 0.781 0.901 0.804 0.903 0.808

Colon
cancer

MST 0.861 0.696 0.867 0.709 0.858 0.692 0.865 0.707
1NN 0.834 0.629 0.811 0.582 0.812 0.586 0.815 0.587
2NN 0.817 0.595 0.829 0.626 0.799 0.565 0.822 0.606
3NN 0.809 0.577 0.751 0.459 0.829 0.617 0.819 0.597
RNG 0.814 0.584 0.820 0.602 0.817 0.593 0.810 0.579

Embryonal
tumour

MST 0.814 0.573 0.851 0.669 0.800 0.549 0.807 0.558
1NN 0.795 0.535 0.804 0.557 0.675 0.281 0.794 0.525
2NN 0.784 0.501 0.747 0.443 0.708 0.326 0.745 0.392
3NN 0.794 0.528 0.749 0.465 0.663 0.253 0.746 0.404
4NN 0.789 0.517 0.765 0.472 0.726 0.368 0.716 0.328
RNG 0.791 0.516 0.764 0.470 0.687 0.303 0.701 0.279

4.8. Comparison with Other Feature Selection Methods

In this section, we establish the competitiveness of the proposed FSPMA method by comparing it with other
well-known feature selection techniques. We compared the performance of the most successful setup of
FSPMA (MA3 algorithm with MineMink and MST) with nine univariate and multivariate feature selection
methods. Among the univariate supervised methods chosen are Chi-square feature selection (Chi), Information
gain ratio (GainRatio), Information gain (IG), ReliefF, Symmetrical Uncertainty (SU) from WEKA and CM1
score [39]. Among the multivariate supervised methods, we selected Correlation based Feature Selection (CFS),
Consistency subset feature selection (Consistency) from WEKA and (a,b)-kFeature Set [40]. We implemented
the (a,b)-k-feature set and CM1 score methods and for all other methods, we adopted the WEKA
implementation using their default configurations. For CM1, following the same approach of [39], we selected
the 20 highest and 20 lowest CM1 markers for all datasets. In order to be consistent, we chose the same number
of features for other univariate feature selection methods.

Table 16 depicts the results for k, ACC and MCC, where in this case k is the number of features finally selected
by the method (‘All’ indicates the total number of features in each dataset). FSPMA obtained the best results
in regards to ACC and MCC in every dataset. In addition, the FSPMA achieved the lowest value of k in the
Shakespeare and AD training datasets, and the value of k did not increase significantly with the total number
of features. The CFS and the Consistency method selected the largest and the second largest feature set,
respectively, for the colon cancer and embryonal tumour datasets. Moreover, the size of feature sets for these
methods increased dramatically with the increase in a total number of features. Although the (a,b)-k-feature
set method selected the largest feature set for the Shakespeare datasets, its performance was not affected by
the total number of features.

In order to evaluate the classification performance of the different selected feature sets, we used the same 49
WEKA classifiers as before. The average MCC and ACC scores of 49 WEKA classifiers are compared in
Table 16. FSPMA’s MineMink fitness function outperformed all the feature selection methods in terms of
average MCC and average ACC in all datasets. Clearly, all feature selection methods reduced the
dimensionality of the colon cancer dataset, but few improved classification performance as suggested by the
average MCC and ACC results for all features (All). In contrast, FSPMA’s MineMink fitness function reduced
the dimensionality of all datasets as well as achieved impressive results compared with all features (All). The

 22

second best results in terms of MCC and ACC were achieved by CFS, (a,b)-k-feature set, GainRation and SU
in Shakespeare, AD, colon and embryo datasets respectively.

Table 16: Comparison of different feature selection methods in terms of feature-subset size (k), MCC and ACC
 Dataset

Shakespeare Alzheimer’s
disease

Colon
cancer

Embryonal
tumour

All k 220 120 2000 7129
ACC 0.949 0.848 0.744 0.619
MCC 0.849 0.698 0.443 0.111

FSPMA k 17 8 69 70
ACC 0.966 0.895 0.831 0.782
MCC 0.900 0.791 0.630 0.509

CFS k 88 27 642 1762
ACC 0.957 0.872 0.770 0.648
MCC 0.870 0.746 0.503 0.187

Consistency k 18 33 236 1402
ACC 0.904 0.814 0.740 0.570
MCC 0.716 0.630 0.448 0.007

(a,b)-k-feature set k 140 10 60 30
ACC 0.952 0.891 0.821 0.756
MCC 0.856 0.784 0.606 0.450

Chi k 40 40 40 40
ACC 0.946 0.871 0.804 0.765
MCC 0.839 0.744 0.571 0.460

GainRatio k 40 40 40 40
ACC 0.945 0.877 0.826 0.775
MCC 0.835 0.755 0.621 0.487

IG k 40 40 40 40
ACC 0.953 0.872 0.808 0.760
MCC 0.861 0.746 0.579 0.459

ReliefF k 40 40 40 40
ACC 0.953 0.872 0.808 0.760
MCC 0.861 0.746 0.579 0.459

SU k 40 40 40 40
ACC 0.949 0.872 0.803 0.777
MCC 0.848 0.745 0.567 0.494

CM1 k 40 40 40 40
ACC 0.941 0.860 0.813 0.594
MCC 0.824 0.722 0.587 0.067

Once again we evaluated the selected feature set obtained by FSPMA using the top performing classifiers as
in previous sections. For each dataset, we condensed the results from the top five performing classifiers (out
of 49 classifiers) for the feature sets generated by different feature selection methods. Then we evaluated each
of these feature sets using those top classifiers and the average MCC and ACC are presented in Table 17. We
observe that the FSPMA continues to exhibit superior performance compared to other feature selection
methods in all datasets. The average performance of all feature selection methods was improved when high-
quality classifiers were used but FSPMA outperformed all of those in each dataset.

 23

Table 17: Average ACC and MCC for the pool of classifiers created by accumulating the best five performing
classifiers in different feature selection methods.

Shakespeare Alzheimer’s disease Colon cancer Embryonal tumour
FSPMA ACC 0.983 0.925 0.867 0.834

MCC 0.951 0.851 0.709 0.617
CFS ACC 0.976 0.885 0.796 0.685

MCC 0.928 0.771 0.561 0.250
Consistency ACC 0.929 0.842 0.752 0.565

MCC 0.791 0.687 0.471 -0.002
(a,b)-k-feature set ACC 0.968 0.912 0.845 0.775

MCC 0.905 0.827 0.664 0.494
Chi ACC 0.959 0.885 0.815 0.786

MCC 0.876 0.770 0.597 0.515
GainRatio ACC 0.963 0.892 0.841 0.807

MCC 0.889 0.785 0.658 0.566
IG ACC 0.966 0.887 0.818 0.771

MCC 0.896 0.775 0.604 0.497
ReliefF ACC 0.955 0.869 0.820 0.729

MCC 0.867 0.738 0.600 0.389
SU ACC 0.965 0.882 0.804 0.806

MCC 0.897 0.764 0.574 0.564
CM1 ACC 0.954 0.878 0.833 0.755

MCC 0.863 0.757 0.631 0.446

5. Discussion

We proposed a novel multivariate filter feature selection method employing proximity graphs by considering
the distance relationships among samples, given a subset of features. The essence of the approach relies on the
hypothesis that for an appropriate set of discriminatory features, the nodes from the same class will cluster in
the constructed proximity graph. Therefore, the objective is to find the subset of features which can minimise
the number of edges between the samples belonging to different classes.

Based on the above proposition, we designed several scoring functions to measure the quality of a feature set
from the topological makeup of the constructed proximity graph. We proposed to quantify the quality of a
feature subset based on its size, the number of edges connecting nodes (samples) from different classes in the
built proximity graph, and a score calculated from each proximity graph. Based on these variables, we
presented four evaluation criteria to evaluate the selected subset of features: Mine, MineMink,
MineMaxPGscore and MineMinkMaxPGscore.

We proposed a memetic algorithm called FSPMA (‘Feature Selection with Proximity graph using Memetic
Algorithm’). We designed five different local search algorithms and tested their standalone search
effectiveness in terms of fitness improvement and time requirement. After ascertaining that all the designed
LS strategies have the ability to improve quality of a feature set, we embedded these local search algorithms
in a generational genetic algorithm and designed five memetic algorithms. The experimental results on four
real-world datasets showed that the designed hybrid algorithms can explore the search space more effectively
than the global search algorithm. We also incorporated an adaptation strategy to balance exploration and
exploitation of the search space. The adaptive memetic algorithms were found not only effective but also
efficient in optimizing the fitness functions. Among the five memetic algorithms, MA3 outperformed all others
significantly when tested with different fitness functions and datasets. Based on this empirical study, we
presume that the reason behind the superior performance of MA3 over other MAs is the synergy of the high
quality local search operator with the other genetic operators in the common MA framework.

In our study, we used 49 machine learning algorithms from the WEKA software package to evaluate the set
of features obtained by the best-performing FSPMA method (MA3) with four proposed fitness functions. We
also evaluated the feature-sets using a pool of best-performing classifiers in order to test their classification
performance with high-quality classifiers. These analyses show that the FSPMA can reduce the dimensionality
and increase classification performance of the algorithms. Due to tractability and practicability, the majority

 24

of analysis in this work was done by using MST as the proximity graph. After establishing the validity of the
method we tested the generalization of the approach by testing it on other types of proximity graphs –
specifically on K-NN and RNG. This study showed that the method generalized well with other proximity
graphs in terms of dimensionality reduction and classification improvement. However, comparing among
different types of proximity graphs it was clear that MST can deliver the maximum classification performance
when used in the FSPMA framework.

In order to establish the competitiveness of the proposed approach, we compared the results obtained by
FSPMA with nine well-known feature selection methods. FSPMA again demonstrated its superiority over the
nine methods using the 49 classifiers and using selecting high-quality classifiers. All the empirical study
undertaken in this work established the validity and usefulness of the proposed approach for feature selection.

The results of the study suggest that the method is indeed highly scalable since the results with the MST have
shown to be very satisfactory in comparison with other choices of proximity graphs. We note that the
computational complexity of FSPMA depends on the number of samples, the used fitness criteria and, most
importantly, by the type of proximity graph used (i.e. it takes significantly higher time when RNG is used
instead of using either the MST or the 1NN graphs). It has been interesting to observe that in this study the
best performing FSPMA algorithm uses the MST which scales well for datasets with a larger number of
samples. In addition, the MST worked well with the MineMink fitness criteria hence this pair of proximity
graph and fitness criteria encourages their joint use for larger datasets.

6. Conclusion

We presented a multivariate filter feature selection method that uses proximity graphs for evaluating the quality
of a feature set using proposed fitness scores. In order to search for the optimal feature subset, we implemented
an adaptive memetic algorithm that works by optimizing the fitness scores. An extensive study was undertaken
using four real-world datasets where we investigate the effect of different types of proximity graphs, fitness
scores and memetic algorithmic setups. The effectiveness of the proposed method was established by
evaluating the selected features with well known classifiers and comparing with other established feature
selection methods.

The current work deserves further investigation in a few important directions. First of all, the only distance
metric used in this work was Euclidean distance whereas there are many other metrics exist. It would be
interesting to apply a few other important distance metrics as Mahalanobis, Minkowski and Spearman’s rank-
based distances. Secondly, in the proposed fitness functions, multiple criteria (e.g. feature set size, number of
inter-class edges) were combined to formulate a single objective optimisation problem. It would be worth to
investigate these multiple criteria as a multi-objective optimisation problem. Finally, the methodology could
be investigated in multi-class datasets.

Acknowledgements

Pablo Moscato acknowledges support from the Australian Research Council Future Fellowship FT120100060.
Pablo Moscato and Regina Berretta acknowledge support from the Australian Research Council Discovery
Projects DP120102576.

References

[1] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," The Journal of
Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

[2] H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering,"
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 491-502, 2005.

[3] M. Dash and H. Liu, "Feature selection for classification," Intelligent Data Analysis, vol. 1, no. 3,
pp. 131-156, 1997.

 25

[4] A. S. Arefin, R. Vimieiro, C. Riveros, H. Craig, and P. Moscato, "An Information Theoretic
Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems,"
PLoS ONE, vol. 9, no. 10, p. e111445, 2014.

[5] J. R. Vergara and P. A. Estévez, "A review of feature selection methods based on mutual
information," Neural Computing and Applications, vol. 24, no. 1, pp. 175-186, 2014.

[6] M. A. Hall, "Correlation-based feature selection for machine learning," The University of Waikato,
1999.

[7] Z. Zhao and H. Liu, "Searching for interacting features," in Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), 2007, vol. 7, pp. 1156-1161.

[8] I. Kononenko, "Estimating attributes: analysis and extensions of RELIEF," in Proceedings of the
European Conference on Machine Learning (ECML-94), 1994, pp. 171-182: Springer.

[9] M. Robnik-Šikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF,"
Machine Learning, vol. 53, no. 1-2, pp. 23-69, 2003.

[10] H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy," IEEE Transactions on Pattern Analysis and
Machine Intelligence vol. 27, no. 8, pp. 1226-1238, 2005.

[11] S. Seth and J. C. Principe, "Variable selection: A statistical dependence perspective," in Proceedings
of the 9th International Conference on Machine Learning and Applications (ICMLA), 2010, pp. 931-
936: IEEE.

[12] C. Liu, W. Y. Wang, Q. Zhao, X. M. Shen, and M. Konan, "A new feature selection method based
on a validity index of feature subset," (in English), Pattern Recognition Letters, vol. 92, pp. 1-8, Jun
1 2017.

[13] Y. Chao, L. Ya-Feng, J. Bo, H. Jungong, and H. Junwei, "LLE Score: A New Filter-Based
Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its
Application to Image Recognition," IEEE Trans Image Process, vol. 26, no. 11, pp. 5257-5269, Nov
2017.

[14] C. Cotta, C. Sloper, and P. Moscato, "Evolutionary search of thresholds for robust feature set
selection: application to the analysis of microarray data," in Applications of Evolutionary
Computing: Springer, 2004, pp. 21-30.

[15] M. Mafarja and S. Mirjalili, "Whale optimization approaches for wrapper feature selection," (in
English), Applied Soft Computing, vol. 62, pp. 441-453, Jan 2018.

[16] M. M. Mafarja, D. Eleyan, I. Jaber, S. Mirjalili, and A. Hammouri, "Binary Dragonfly Algorithm for
Feature Selection," (in English), 2017 International Conference on New Trends in Computing
Sciences (Ictcs), pp. 12-17, 2017.

[17] S. K. Gu, R. Cheng, and Y. C. Jin, "Feature selection for high-dimensional classification using a
competitive swarm optimizer," (in English), Soft Computing, vol. 22, no. 3, pp. 811-822, Feb 2018.

[18] J. Xie, W. Xie, C. Wang, and X. Gao, "A novel hybrid feature selection method based on IFSFFS
and SVM for the diagnosis of erythemato-squamous diseases," Journal of Machine Learning
Research-Proceedings Track, vol. 11, pp. 142-151, 2010.

[19] O. Abedinia, N. Amjady, and H. Zareipour, "A New Feature Selection Technique for Load and Price
Forecast of Electrical Power Systems," (in English), Ieee Transactions on Power Systems, vol. 32,
no. 1, pp. 62-74, Jan 2017.

[20] F. Neri, C. Cotta, and P. Moscato, Handbook of memetic algorithms. Springer, 2011.
[21] A. Abu Zaher, R. Berretta, A. S. Arefin, and P. Moscato, "FSMEC: A feature selection method

based on the minimum spanning tree and evolutionary computation," presented at the Proceedings of
the 13th Australian Data Mining Conference (AusDM 2015), Sydney, Australia, 2015.

[22] A. Abu Zaher, R. Berretta, N. Noman, and P. Moscato, "A new computational intelligence approach
for feature selection using proximity graphs," in Proceedings of the Applied Informatics and
Technology Innovation Conference (AITIC), 2016.

[23] P. Bose et al., "Proximity graphs: E, Δ, Δ, χ and ω," International Journal of Computational
Geometry & Applications, vol. 22, no. 05, pp. 439-469, 2012.

[24] M. A. Carreira-Perpinán and R. S. Zemel, "Proximity Graphs for Clustering and Manifold
Learning," in Neural Information Processing Systems (NIPS) 2004, vol. 17, pp. 225-232.

[25] M. Inostroza-Ponta, R. Berretta, A. Mendes, and P. Moscato, "An automatic graph layout procedure
to visualize correlated data," in IFIP International Conference on Artificial Intelligence in Theory
and Practice, 2006.

 26

[26] P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms (Caltech Concurrent Computation Program, C3P Report). 1989.

[27] Z. Zhu, Y.-S. Ong, and M. Dash, "Wrapper–filter feature selection algorithm using a memetic
framework," IEEE Transactions on Systems and Cybernetics, vol. 37, no. 1, pp. 70-76, 2007.

[28] J. Lee and D. W. Kim, "Memetic feature selection algorithm for multi-label classification," (in
English), Information Sciences, vol. 293, pp. 80-96, Feb 1 2015.

[29] A. Moser and M. N. Murty, "On the scalability of genetic algorithms to very large-scale feature
selection," in Real-World Applications of Evolutionary Computing: Springer, 2000, pp. 77-86.

[30] J. Y. Lin and Y. P. Chen, "When and What Kind of Memetic Algorithms Perform Well," (in
English), 2012 Ieee Congress on Evolutionary Computation (Cec), 2012.

[31] H. Ishibuchi, T. Yoshida, and T. Murata, "Balance between genetic search and local search in
memetic algorithms for multiobjective permutation flowshop scheduling," (in English), Ieee
Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 204-223, Apr 2003.

[32] H. Iba and N. Noman, New frontier in evolutionary algorithms: theory and applications. World
Scientific Publishing Co., Inc., 2011.

[33] S. Ray et al., "Classification and prediction of clinical Alzheimer's diagnosis based on plasma
signaling proteins," Nature medicine, vol. 13, no. 11, pp. 1359-1362, 2007.

[34] M. G. Ravetti and P. Moscato, "Identification of a 5-protein biomarker molecular signature for
predicting Alzheimer's disease," PloS One, vol. 3, no. 9, p. e3111, 2008.

[35] H. Craig and R. Whipp, "Old spellings, new methods: automated procedures for indeterminate
linguistic data," Literary and Linguistic Computing, vol. 25, no. 1, pp. 37-52, 2010.

[36] U. Alon et al., "Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays," Proceedings of the National Academy of
Sciences, vol. 96, no. 12, pp. 6745-6750, 1999.

[37] S. L. Pomeroy et al., "Prediction of central nervous system embryonal tumour outcome based on
gene expression," Nature, vol. 415, no. 6870, pp. 436-442, 2002.

[38] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and
Techniques. Elsevier, 2011.

[39] J. Marsden, D. Budden, H. Craig, and P. Moscato, "Language individuation and marker words:
shakespeare and his maxwell's demon," PloS One, vol. 8, no. 6, p. e66813, 2013.

[40] R. Berretta, W. Costa, and P. Moscato, "Combinatorial optimization models for finding genetic
signatures from gene expression datasets," in Bioinformatics: Springer, 2008, pp. 363-377.

